网络编程--tcp三次握手四次挥手

1、三次握手

fb391b96341f16dcfbf8495b7c820c5f.jpeg

(1)三次握手的详述

首先Client端发送连接请求报文,Server段接受连接后回复ACK报文,并为这次连接分配资源。Client端接收到ACK报文后也向Server段发生ACK报文,并分配资源,这样TCP连接就建立了。

最初两端的TCP进程都处于CLOSED关闭状态,A主动打开连接,而B被动打开连接。(A、B关闭状态CLOSED——B收听状态LISTEN——A同步已发送状态SYN-SENT——B同步收到状态SYN-RCVD——A、B连接已建立状态ESTABLISHED)
B的TCP服务器进程先创建传输控制块TCB,准备接受客户进程的连接请求。然后服务器进程就处于LISTEN(收听)状态,等待客户的连接请求。若有,则作出响应。
1)第一次握手:A的TCP客户进程也是首先创建传输控制块TCB,然后向B发出连接请求报文段,(首部的同步位SYN=1,初始序号seq=x),(SYN=1的报文段不能携带数据)但要消耗掉一个序号,此时TCP客户进程进入SYN-SENT(同步已发送)状态。
2)第二次握手:B收到连接请求报文段后,如同意建立连接,则向A发送确认,在确认报文段中(SYN=1,ACK=1,确认号ack=x+1,初始序号seq=y),测试TCP服务器进程进入SYN-RCVD(同步收到)状态;
3)第三次握手:TCP客户进程收到B的确认后,要向B给出确认报文段(ACK=1,确认号ack=y+1,序号seq=x+1)(初始为seq=x,第二个报文段所以要+1),ACK报文段可以携带数据,不携带数据则不消耗序号。TCP连接已经建立,A进入ESTABLISHED(已建立连接)。
当B收到A的确认后,也进入ESTABLISHED状态。

(2)总结三次握手过程:

第一次握手:起初两端都处于CLOSED关闭状态,Client将标志位SYN置为1,随机产生一个值seq=x,并将该数据包发送给Server,Client进入SYN-SENT状态,等待Server确认;
第二次握手:Server收到数据包后由标志位SYN=1得知Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=x+1,随机产生一个值seq=y,并将该数据包发送给Client以确认连接请求,Server进入SYN-RCVD状态,此时操作系统为该TCP连接分配TCP缓存和变量;
第三次握手:Client收到确认后,检查ack是否为x+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=y+1,并且此时操作系统为该TCP连接分配TCP缓存和变量,并将该数据包发送给Server,Server检查ack是否为y+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client和Server就可以开始传输数据。
起初A和B都处于CLOSED状态——B创建TCB,处于LISTEN状态,等待A请求——A创建TCB,发送连接请求(SYN=1,seq=x),进入SYN-SENT状态——B收到连接请求,向A发送确认(SYN=ACK=1,确认号ack=x+1,初始序号seq=y),进入SYN-RCVD状态——A收到B的确认后,给B发出确认(ACK=1,ack=y+1,seq=x+1),A进入ESTABLISHED状态——B收到A的确认后,进入ESTABLISHED状态。
TCB传输控制块Transmission Control Block,存储每一个连接中的重要信息,如TCP连接表,到发送和接收缓存的指针,到重传队列的指针,当前的发送和接收序号。

(3)为什么A还要发送一次确认呢?可以二次握手吗?

答:
主要为了防止已失效的连接请求报文段突然又传送到了B,因而产生错误。如A发出连接请求,但因连接请求报文丢失而未收到确认,于是A再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接,A工发出了两个连接请求报文段,其中第一个丢失,第二个到达了B,但是第一个丢失的报文段只是在某些网络结点长时间滞留了,延误到连接释放以后的某个时间才到达B,此时B误认为A又发出一次新的连接请求,于是就向A发出确认报文段,同意建立连接,不采用三次握手,只要B发出确认,就建立新的连接了,此时A不理睬B的确认且不发送数据,则B一致等待A发送数据,浪费资源。

(4)Server端易受到SYN攻击?

答:
服务器端的资源分配是在二次握手时分配的,而客户端的资源是在完成三次握手时分配的,所以服务器容易受到SYN洪泛攻击,SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server则回复确认包,并等待Client确认,由于源地址不存在,因此Server需要不断重发直至超时,这些伪造的SYN包将长时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络拥塞甚至系统瘫痪。
防范SYN攻击措施:降低主机的等待时间使主机尽快的释放半连接的占用,短时间受到某IP的重复SYN则丢弃后续请求。
c1351e1839b480305bb73b3eff70d7b8.png

2.四次挥手

(1)四次挥手的详述

假设Client端发起中断连接请求,也就是发送FIN报文。Server端接到FIN报文后,意思是说"我Client端没有数据要发给你了",但是如果你还有数据没有发送完成,则不必急着关闭Socket,可以继续发送数据。所以你先发送ACK,“告诉Client端,你的请求我收到了,但是我还没准备好,请继续你等我的消息”。这个时候Client端就进入FIN_WAIT状态,继续等待Server端的FIN报文。当Server端确定数据已发送完成,则向Client端发送FIN报文,“告诉Client端,好了,我这边数据发完了,准备好关闭连接了”。Client端收到FIN报文后,"就知道可以关闭连接了,但是他还是不相信网络,怕Server端不知道要关闭,所以发送ACK后进入TIME_WAIT状态,如果Server端没有收到ACK则可以重传。“,Server端收到ACK后,“就知道可以断开连接了”。Client端等待了2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,我Client端也可以关闭连接了。Ok,TCP连接就这样关闭了!

数据传输结束后,通信的双方都可释放连接,A和B都处于ESTABLISHED状态。(A、B连接建立状态ESTABLISHED——A终止等待1状态FIN-WAIT-1——B关闭等待状态CLOSE-WAIT——A终止等待2状态FIN-WAIT-2——B最后确认状态LAST-ACK——A时间等待状态TIME-WAIT——B、A关闭状态CLOSED)
1)A的应用进程先向其TCP发出连接释放报文段(FIN=1,序号seq=u),并停止再发送数据,主动关闭TCP连接,进入FIN-WAIT-1(终止等待1)状态,等待B的确认。
2)B收到连接释放报文段后即发出确认报文段,(ACK=1,确认号ack=u+1,序号seq=v),B进入CLOSE-WAIT(关闭等待)状态,此时的TCP处于半关闭状态,A到B的连接释放。
3)A收到B的确认后,进入FIN-WAIT-2(终止等待2)状态,等待B发出的连接释放报文段。
4)B没有要向A发出的数据,B发出连接释放报文段(FIN=1,ACK=1,序号seq=w,确认号ack=u+1),B进入LAST-ACK(最后确认)状态,等待A的确认。
5)A收到B的连接释放报文段后,对此发出确认报文段(ACK=1,seq=u+1,ack=w+1),A进入TIME-WAIT(时间等待)状态。此时TCP未释放掉,需要经过时间等待计时器设置的时间2MSL后,A才进入CLOSED状态。

(2)总结四次挥手过程:

起初A和B处于ESTABLISHED状态——A发出连接释放报文段并处于FIN-WAIT-1状态——B发出确认报文段且进入CLOSE-WAIT状态——A收到确认后,进入FIN-WAIT-2状态,等待B的连接释放报文段——B没有要向A发出的数据,B发出连接释放报文段且进入LAST-ACK状态——A发出确认报文段且进入TIME-WAIT状态——B收到确认报文段后进入CLOSED状态——A经过等待计时器时间2MSL后,进入CLOSED状态。

(3)为什么A在TIME-WAIT状态必须等待2MSL的时间?

MSL最长报文段寿命Maximum Segment Lifetime,MSL=2
答: 两个理由:1)保证A发送的最后一个ACK报文段能够到达B。2)防止“已失效的连接请求报文段”出现在本连接中。
1)这个ACK报文段有可能丢失,使得处于LAST-ACK状态的B收不到对已发送的FIN+ACK报文段的确认,B超时重传FIN+ACK报文段,而A能在2MSL时间内收到这个重传的FIN+ACK报文段,接着A重传一次确认,重新启动2MSL计时器,最后A和B都进入到CLOSED状态,若A在TIME-WAIT状态不等待一段时间,而是发送完ACK报文段后立即释放连接,则无法收到B重传的FIN+ACK报文段,所以不会再发送一次确认报文段,则B无法正常进入到CLOSED状态。
2)A在发送完最后一个ACK报文段后,再经过2MSL,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失,使下一个新的连接中不会出现这种旧的连接请求报文段。

(4)为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:TCP的三次握手是为了建立可靠的连接。具体来说,客户端发送一个SYN包到服务器,表示自己想要建立连接。服务器收到这个包后,回复一个SYN+ACK包,表示自己已经收到请求,并且同意建立连接。最后,客户端再发送一个ACK包,表示自己也已经收到了服务器的回复,并且同意建立连接。
这里之所以要进行三次握手,是因为TCP是面向连接的协议,需要确保双方都正确地接收到了对方的请求,才能建立可靠的连接。通过三次握手的方式,可以确保连接的双方都认可了对方的身份和可用性,从而避免了因为网络延迟等原因导致连接建立失败的情况。
四次挥手是为了关闭连接。具体来说,当客户端想要关闭连接时,发送一个FIN包到服务器,表示自己不再发送数据了。服务器收到这个包后,回复一个ACK包,表示自己已经收到了请求。但是服务器可能还没有发送完自己的数据,所以服务器在发送完数据后,会再次发送一个FIN包,表示自己也不再发送数据了。客户端收到这个包后,回复一个ACK包,表示自己已经收到了服务器的请求,同时也准备关闭连接了。
四次挥手之所以要比三次握手多一次,是因为在关闭连接时,双方都需要确认自己的数据已经全部传输完毕,才能安全地关闭连接。另外,因为TCP具有可靠传输的特点,所以在关闭连接时需要先停止数据的发送,等待对方完成传输后再关闭连接,从而避免数据丢失或被截断。

(5)为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3029306.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

vue + element-plus 开发中遇到的问题

1.问题之路由守卫 初写路由守卫,对于next()的理解不是很透彻,就想着都放行,不然看不到效果,结果控制台出现了警告,想着报黄的问题就不是问题,但仔细一看发现他说,如果再生产阶段就会失败&#x…

AI图书推荐:使用FastAPI框架构建AI服务

《使用FastAPI构建生成式AI服务》(Building Generative AI Services with FastAPI (Early Release) )是一本由Ali Parandeh编写的书籍,计划于2025年3月首次出版,该书以实践为导向,指导读者如何开发具备丰富上下文信息的…

mysql基础概念

文章目录 登录mysqlmysql和mysqld数据库操作主流数据库MYSQL架构SQL分类 登录mysql 登录mysql连接服务器,mysql连接时可以指明主机用-h选项,然后就可以指定主机Ip地址,-P可以指定端口号 -u指定登录用户 -P指定登录密码 查看系统中有无mysql&…

嵌入式C语言高级教程:实现基于STM32的智能照明系统

智能照明系统不仅可以自动调节光源的亮度和色温,还可以通过感应用户的行为模式来优化能源消耗。本教程将指导您如何在STM32微控制器上实现一个基本的智能照明系统。 一、开发环境准备 硬件要求 微控制器:STM32F103RET6,具有足够的处理能力…

Python语言基础学习(上)

目录 一、常量和表达式 二、变量和类型 2.1 认识变量 2.2 定义变量 2.3 变量类型 1、整数 int 2、浮点数(小数)float 3、字符串 str 4、布尔类型 2.4 类型转换 三、注释 3.1 单行注释 3.2 文档注释(或者多行注释) …

数字工厂管理系统如何助力企业数据采集与分析

随着科技的不断进步,数字化已成为企业发展的重要趋势。在制造业领域,数字工厂管理系统的应用日益广泛,它不仅提升了生产效率,更在数据采集与分析方面发挥着举足轻重的作用。本文旨在探讨数字工厂管理系统如何助力企业数据采集与分…

[uniapp] 配置ts类型声明

我想引进图片,但是报错 声明一下就行 TypeScript 支持 | uni-app官网 创建tsconfig.json文件,复制官网的配置 然后在随便一个目录下写一个随便名字的.d.ts文件 例如这样 保存就行 因为ts是默认扫描全部的,所以要按照官网的写法 把不必要的排除掉就行,免得浪费性能

数据库的一些知识点

数据模型的组成要素中,描述数据库的组成对象以及对象之间的联系的是( )。 A 数据结构 B 数据操作 C 数据的完整性约束条件 D 数据的安全性约束条件 2.单选题 (2分) 若关系中的某一组属性的值能够唯一地标识一个元组,而其子集…

ROS实操:通信机制的实现

最近闲来无事,打算重温了一下ROS方面的相关知识。先前的学习都是一带而过,发现差不多都忘了,学习的不够深入。因此,在重温的同时,写下了这篇关于ROS通信实操的学习博客。 上一篇博客的链接为:ROS架构的学习…

OpenCompass大模型评估

作业链接: Tutorial/opencompass/homework.md at camp2 InternLM/Tutorial GitHub 项目链接: GitHub - open-compass/opencompass: OpenCompass is an LLM evaluation platform, supporting a wide range of models (Llama3, Mistral, InternLM2,GPT-…

Modown9.1主题无限制使用+Erphpdown17.1插件

Modown9.1主题无限制使用 1、Erphpdown17.1插件Modown9.1主题 2、送Modown主题详细教程。 1、Erphpdown插件和Modown主题无需激活 2、送的插件均无需激活 3、主题插件均不包更新 4、已亲测可以完美使用。 功能强大,适用于绝大多数虚拟资源站!物超所值&a…

远程桌面连接不上怎么连服务器,原因是什么?如何解决?

远程桌面连接不上怎么连服务器,原因是什么?如何解决? 面对远程桌面连接不上的困境,我们有办法! 当你尝试通过远程桌面连接服务器,但遭遇连接失败的挫折时,不要慌张。这种情况可能由多种原因引起…

Netty底层数据交互源码分析

文章目录 1. 前题回顾2. 主线流程源码分析3. Netty底层的零拷贝4. ByteBuf内存池设计 书接上文 1. 前题回顾 上一篇博客我们分析了Netty服务端启动的底层原理,主要就是将EventLoop里面的线程注册到了Select中,然后调用select方法监听客户端连接&#xf…

Amesim基础篇-热仿真常用模型库-Air Conditioning-Pipes

前言 基于上文对空调库各个元件的介绍,本文进一步将其中的管路展开。 管路介绍 1 摩擦阻力管(R): 具有阻力特性的管路,通过管长以及管截面计算阻力。 2 可调节阻力管(R): 只具有…

STM32CubeMX软件使用(超详细)

1、Cube启动页介绍 2、芯片选择页面介绍 3、输入自己的芯片型号,这里以STM32U575RIT6举例 4、芯片配置页码介绍 5、芯片外设配置栏详细说明 6、点击ClockConfiguration进行时钟树的配置,选择时钟树后可以选择自己想使用的时钟源,也可以直接输…

[c++]多态的分析

多态详细解读 多态的概念多态的构成条件 接口继承和实现继承: 多态的原理:动态绑定和静态绑定 多继承中的虚函数表 多态的概念 -通俗的来说:当不同的对象去完成某同一行为时,会产生不同的状态。 多态的构成条件 必须通过基类的指针或者引用调用虚函数1虚…

3---Linux编译器gcc/g++

一、程序的翻译过程:ESc->iso 1.1预处理:c->c 主要功能:宏替换、头文件的展开、条件编译、去注释;目的是让代码变得纯粹。条件编译,可以实现对代码的裁剪。比如对于不同用户,设置不同的宏常量&…

聚观早报 | 苹果新款iPad Pro发布;国产特斯拉4月交付量

聚观早报每日整理最值得关注的行业重点事件,帮助大家及时了解最新行业动态,每日读报,就读聚观365资讯简报。 整理丨Cutie 5月9日消息 苹果新款iPad Pro发布 国产特斯拉4月交付量 iOS 18新功能爆料 真我GT Neo6续航细节 三星Galaxy Z F…

【计算机毕业设计】springboot海产品加工销售一体化管理系统

时代在飞速进步,每个行业都在努力发展现在先进技术,通过这些先进的技术来提高自己的水平和优势,海产品加工销售一体化 管理系统当然不能排除在外。微信小程序海产品加工销售一体化管理系统是在实际应用和软件工程的开发原理之上,运…

驱动开发-字符设备驱动的注册与注销

1.注册字符设备驱动 #include<fs.h> int register_chrdev(unsigned int major,const char *name,const struct file_operations *fops) 函数功能&#xff1a;注册字符设备驱动 参数&#xff1a;major&#xff1a;主设备号 major>0:静态指定主设备号&#xff0c;不…