【微机原理及接口技术】8086/8088系统时序和微机总线

【微机原理及接口技术】8086/8088系统时序和微机总线


文章目录

  • 【微机原理及接口技术】8086/8088系统时序和微机总线
  • 前言
  • 一、8086/8088引脚信号和工作模式
    • 1.8088 的两种组态模式
    • 2.最小组态的引脚信号
    • 3.最小组态的总线形成
    • 4.最大组态的总线形成
  • 二、8086/8088典型时序
    • 1.三种周期定义及关系
    • 2.最小组态的总线时序
  • 三、总线标准
  • 总结


前言

在本篇文章当中我们会详细讲到8086/8088引脚信号和工作模式,8086/8088典型时序,以及总线标准。


一、8086/8088引脚信号和工作模式

外部特性表现在引脚信号上
学习是应关注:
1)引脚的功能:引脚信号的定义、作用;通常采用英文单词或其缩写表示;
2)信号的流向:信号从芯片向外输出还是从外部输入芯片或者是双向的;
3)触发方式:起作用的电平或脉冲,高、低电平有效,上升,下降边沿有效;
三态能力:输出正常的低电平、高电平外,还可以是输出高阻的第三态;

1.8088 的两种组态模式

两种组态构成两种不同规模的应用系统
最小组态模式
构成较小规模的应用系统
8088本身提供所有的系统总线信号
最大组态模式
构成较大规模的应用系统
8088和总线控制器8288共同形成系统总线信号(8088提供DB、AB,8288提供CB

两种组态利用MN/MX引脚区别
MN/MX
高电平为最小组态模式
MN/MX*接低电平为最大组态模式
两种组态下的内部操作并没有区别
我们接下来以最小组态展开基本原理

8088 的引脚图,40个引脚:(看起来很多我们接下来一步步介绍)
在这里插入图片描述

2.最小组态的引脚信号

对照上面的引脚图接下来我们逐个介绍:
1.数据和地址引脚
2.读写控制引脚
3中断请求和响应引脚
4.总线请求和响应引脚
5.其他引脚

  • 1.数据和地址引脚

AD7~AD0(Address/Data)
地址/数据分时复用引脚,双向、三态
这些引脚在访问存储器或I/O端口的总线操作周期中:
第一个时钟周期,输出存储器或I/O端口的低8位地址A7~A0
其它时间用于传送8位数据D7~D0
A15~A8(Address)
中间8位地址引脚,输出、三态
这些引脚在访问存储器或I/O端口时,提供全部20位地址中的中间8位地址A15~A8
A19/S6~A16/S3(Address/Status)
地址/状态分时复用引脚,输出、三态
这些引脚在访问存储器的第一个时钟周期输出高4位地址A19~A16
访问I/O端口的第一个时钟周期全部输出低电平无效
其它时间输出状态信号S6~S3

  • 2.读写控制引脚

ALE(Address Latch Enable)
地址锁存允许,输出、三态、高电平有效
ALE引脚高电平有效时,表示复用引脚:AD7~AD0和A19/S6~A16/S3正在传送地址信息
由于地址信息在这些复用引脚上出现的时间很短暂,所以系统可以利用ALE引脚将地址锁存起来
IO/M* (Input and Output/Memory)
I/O或存储器访问,输出、三态
该引脚输出高电平时,表示CPU将访问I/O端口,这时地址总线A15~A0提供16位I/O端口地址
该引脚输出低电平时,表示CPU将访问存储器,这时地址总线A19~A0提供20位存储器地址
WR* (Write)
写控制,输出、三态、低电平有效
有效时,表示CPU正在写出数据给存储器或I/O端口
RD* (Read)
读控制,输出、三态、低电平有效
有效时,表示CPU正在从存储器或I/O端口读入数据
IO/M*、WR和RD是最基本的控制信号,组合后,控制4种基本的总线周期
在这里插入图片描述
READY
存储器或I/O端口就绪,输入、高电平有效
在总线操作周期中,8088 CPU会在第3个时钟周期的前沿测试该引脚
如果测到高有效,CPU直接进入第4个时钟周期
如果测到无效,CPU将插入等待周期Tw
CPU在等待周期的前沿仍然要监测READY信号,有效则进入第4个时钟周期,否则继续插入等待周期Tw。
DEN* (Data Enable)
数据允许,输出、三态、低电平有效
有效时,表示当前数据总线上正在传送数据,可利用它来控制对数据总线的驱动
DT/R* (Data Transmit/Receive)
数据发送/接收,输出、三态
该信号表明当前总线上数据的流向
高电平时数据自CPU输出(发送)
低电平时数据输入CPU(接收
SS0* (System Status 0)
最小组态模式下的状态输出信号
它与IO/M* 和DT/R* 一道,通过编码指示CPU在最小组态下的8种工作状态

  1. 取指 5. 中断响应
  2. 存储器读 6. I/O读
  3. 存储器写 7. I/O写
  4. 过渡状态 8. 暂停
  • 3中断请求和响应引脚

INTR(Interrupt Request)
可屏蔽中断请求,输入、高电平有效
有效时,表示请求设备向CPU申请可屏蔽中断
该请求的优先级别较低,并可通过中断指令CLI清除标志寄存器中的IF标志、从而对中断请求进行屏蔽
INTA* (Interrupt Acknowledge) ***
可屏蔽中断响应,输出、低电平有效
有效时,表示来自INTR引脚的中断请求
已被CPU响应
*,CPU进入中断响应周期
中断响应周期是连续的两个,每个都发出有效响应信号,以便通知外设接口它们的中断请求已被响应、并令有关外设接口将中断向量号送到数据总线
NMI(Non-Maskable Interrupt)NMI(Non-Maskable Interrupt)
不可屏蔽中断请求,输入、上升沿有效
有效时,表示外界向CPU申请不可屏蔽中断
该请求的优先级别高于INTR,并且不能在CPU内被屏蔽
当系统发生紧急情况时,可通过它向CPU申请不可屏蔽中断服务

  • 4.总线请求和响应引脚

HOLD
总线保持(即总线请求),输入、高电平有效
有效时,表示总线请求设备向CPU申请占有总线
该信号从有效回到无效时,表示总线请求设备对总线的使用已经结束,通知CPU收回对总线的控制权
HLDA(HOLD Acknowledge)
总线保持响应(即总线响应),输出、高电平有效
有效时,表示CPU已响应总线请求并已将总线释放
此时CPU的地址引线、数据引线具有三态输出能力的控制引线全面呈现高阻,使总线请求设备可以顺利接管总线
待到总线请求信号HOLD无效,总线响应信号HLDA也转为无效,CPU重新获得总线控制权

  • 5.其它引脚

RESET
复位请求,输入、高电平有效
该信号有效,将使CPU回到其初始状态;当它再度返回无效时,CPU将重新开始工作
8088复位后CS=FFFFH、IP=0000H,所以程序入口在物理地址FFFF0H
CLK(Clock)
时钟信号,输入
系统通过该引脚给CPU提供内部定时信号。8088的标准工作时钟为5MHz
IBM PC/XT机的8088采用了4.77MHz的时钟,其周期约为210ns
Vcc
电源输入,向CPU提供+5V电源
GND
接地,向CPU提供参考地电平
MN/MX* (Minimum/Maximum)
组态选择,输入
接高电平时,8088引脚工作在最小组态;反之,8088工作在最大组态
TEST*
测试,输入、低电平有效
该引脚与WAIT指令配合使用
当CPU执行WAIT指令时,它将在每5个时钟周期对该引脚进行测试:如果无效,则程序踏步并继续测试;如果有效,则程序恢复运行
也就是说,WAIT指令使CPU产生等待,直到TEST*引脚有效为止

引脚小结

8088的CPU引脚提供系统总线的基本信号
可以分成三类信号线:
8位数据线:D0~D7
20位地址线:A0~A19
控制线:
ALE、IO/M*、WR*、RD*、READY
INTR、INTA*、NMI,HOLD、HLDA
RESET、CLK、Vcc、GND

“引脚”提问

问一:
CPU引脚是如何与外部连接的呢?
解答:通过总线——总线形成?
问二:
CPU引脚是如何相互配合来实现总线操作,从而控制系统工作的呢?
解答:通过控制总线时序——总线时序?
接下来我们将讲到总线形成。

3.最小组态的总线形成

1)20位地址总线——
采用3个三态透明锁存器8282进行锁存和驱动
2)8位数据总线——
采用数据收发器8286进行驱动,
也可由8088直接提供
3)系统控制信号——
由8088引脚直接提供
这里是引用
在这里插入图片描述

补充内容:三态门和D触发器

以三态门形成的三态缓冲器和以D触发器形成的锁存器是微机接口电路中最常使用的两类逻辑电路
三态门:功率放大、导通开关
器件共用总线时,一般使用三态电路:
需要使用总线的时候打开三态门(高、低电平);
不使用的时候关闭三态门,使之处于高阻
D触发器:信号保持,也可用作导通开关

D触发器

这里是引用
电平锁存:低电平锁存
上升沿锁存:通常用负脉冲上升沿触发锁存

Intel 8282

这里是引用

三态缓冲器

三态门具有单向导通和三态的特性
在这里插入图片描述
T为低电平时:
输出为高阻抗(三态)
T为高电平时:
输出为输入的反相

双向三态缓冲器

三态门具有双向导通和三态的特性
在这里插入图片描述
OE=0,导通
T=1 A→B
T=0 A←B
OE
=1,不导通

Intel 8286

在这里插入图片描述

4.最大组态的总线形成

⑴ 系统地址总线
采用三态透明锁存器8282锁存和驱动
⑵ 系统数据总线
通过三态双向缓冲器8286形成和驱动,
也可由8088直接提供
⑶ 系统控制总线
主要由总线控制器8288形成
MEMR*、MEMW*、IOR*、IOW*、INTA*
这里是引用


二、8086/8088典型时序

总线时序描述CPU引脚如何实现总线操作,从而决定系统各部件间的同步和定时。
总线操作是指CPU通过总线对外的各种操作
8088的总线操作主要有:
存储器读操作、I/O读操作
存储器写操作、I/O写操作
中断响应操作
总线响应操作

1.三种周期定义及关系

时钟周期:时钟是由振荡源产生的、幅度和周期不变的节拍脉冲,每个脉冲周期称为时钟周期,又称为T状态
总线周期:指CPU通过总线进行某种操作的过程。如存储器读周期、存储器写周期、I/O读周期、I/O写周期等。
指令周期:指一条指令经取指、译码、读操作数、执行、送结果数据的过程。
一个基本总线周期包含4个时钟周期:
4个时钟周期编号为T1、T2、T3和T4
当需要延长总线周期时,需要在T3和T4之间插入若干时钟周期Tw, Tw又称为等待周期
在两个总线周期之间,系统总线处在空闲状态,需要执行若干时钟周期Ti, Ti又称为空闲周期
在这里插入图片描述
基本总线周期由4个T状态组成:T1、T2、T3、T4
等待时钟周期Tw,在总线周期的T3和T4之间插入
空闲时钟周期Ti,在两个总线周期之间插入
一个指令周期包含若干总线周期:
任何指令的取指阶段都需要存储器读总线周期,读取的内容是指令代码
任何一条以存储单元为源操作数的指令都将引起存储器读总线周期,任何一条以存储单元为目的操作数的指令都将引起存储器写总线周期
只有执行IN指令才出现I/O读总线周期,执行OUT指令才出现I/O写总线周期
CPU响应中断请求(包括INTR和NMI)时生成中断响应总线周期

CPU总线周期采用同步时序
各部件都以系统时钟信号为基准
当相互不能配合时,快速部件(CPU)插入等待周期Tw等待慢速部件(I/O和存储器)
CPU与外设接口常采用异步时序,它们通过应答联络信号实现同步操作

2.最小组态的总线时序

接下来展开介绍微处理器最基本的四种总线周期
1.存储器读总线周期
2.存储器写总线周期
3.I/O读总线周期
4.I/O写总线周期

  • 1.存储器读总线周期

在这里插入图片描述
T1状态——IO/M输出低电平,表示存储器操作;
输出20位存储器地址A19~A0;
ALE输出正脉冲,表示锁存总线输出地址
T2状态——输出控制信号RD

T3和Tw状态——检测数据传送是否能够完成
T4状态——前沿读取数据,完成数据传送

  • 2.存储器写总线周期

在这里插入图片描述
T1状态——IO/M输出低电平,表示存储器操作;输出20位存储器地址A19~A0;
ALE输出正脉冲,表示锁存总线输出地址
T2状态——输出控制信号WR
和数据D7~D0
T3和Tw状态——检测数据传送是否能够完成
T4状态——完成数据传送

  • 3.I/O读总线周期

在这里插入图片描述
T1状态——IO/M输出高电平,表示I/O操作;
输出16位I/O地址A15~A0;
ALE输出正脉冲,表示锁存总线输出地址
T2状态——输出控制信号RD

T3和Tw状态——检测数据传送是否能够完成
T4状态——前沿读取数据,完成数据传送

  • 4.I/O写总线周期

在这里插入图片描述

插入等待周期TW

这里是引用


三、总线标准

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


总结

到这里这篇文章的内容就结束了,谢谢大家的观看,如果有好的建议可以留言喔,谢谢大家啦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3019555.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

人工智能|推荐系统——工业界的推荐系统之序列建模

一、LastN特征 LastN:⽤户最近的𝑛 次交互(点击、点赞等)的物品ID。 对LastN物品ID做embedding,得到 𝑛 个向量。 把 𝑛 个向量取平均,作为⽤户的⼀种特征。 适⽤于召回双塔模型、…

Python 全栈体系【四阶】(四十一)

第五章 深度学习 九、图像分割 1. 基本介绍 1.1 什么是图像分割 图像分割(Segmentation)是图像处理和机器视觉一个重要分支,其目标是精确理解图像场景与内容。图像分割是在像素级别上的分类,属于同一类的像素都要被归为一类&a…

论文查重率高,有什么办法降重吗?

现在大部分学校已经进入到论文查重降重的阶段了。如果查重率居高不下,延毕的威胁可能就在眼前。对于即将告别校园的学子们,这无疑是个噩梦。四年磨一剑,谁也不想在最后关头功亏一篑。 查重率过高,无非以下两种原因。要么是作为“…

Vue3基础(API风格、监听、生命周期、toRefs、组件通信、插槽、axios,Promise)

Vue3基础(API风格、监听、生命周期、toRefs、组件通信、插槽、axios,Promise) 目录 Vue3基础(API风格、监听、生命周期、toRefs、组件通信、插槽、axios,Promise)API 风格选项式API组合式API混合式 事件监听…

DDD架构学习

文章目录 领域建模事件风暴四色建模法 DDD名称解析领域子域核心域通用域支撑域限界上下文战术设计实体值对象聚合和聚合根工厂资源库领域服务领域事件 DDD代码的分层名词解析实体值对象聚合根领域服务领域事件 VO&DTO&DO&PO博客 领域建模 领域驱动设计的核心在于领…

互联网产品为什么要搭建会员体系?

李诞曾经说过一句话:每个人都可以讲5分钟脱口秀。这句话换到会员体系里面同样适用,每个人都能聊点会员体系相关的东西。 比如会员体系属于用户运营的范畴,比如怎样用户分层,比如用户标签及CDP、会员积分、会员等级、会员权益和付…

手拿滑块撕瑞数 我叫超弟你记住!!什么腾讯滑块、数美、顶象、阿里通通拿下!最新版2024.5.8号

本文章非标题党,可提供主流验证码解决方案及成品、补环境框架、逆向教学 不论你是逆向小白、亦或是需求方都可通过本文章各取所需!! 废话不多说,老规矩,附上腾讯旗下验证码程序运行图,附程序运行时间 &…

【稳定检索|EI会议】✅2024年食品科学与生物医学国际会议(ICFSBS 2024)✅

2024 International Conference on Food Science and Biomedical Sciences 一、大会信息 会议名称:2024年食品科学与生物医学国际会议会议简称:ICFSBS 2024收录检索:提交Ei Compendex,CPCI,CNKI,Google Scholar等会议官网:http:/…

揭秘SSL证书一年费用:网络安全预算规划指南

网络安全在数字化时代的重要性不言而喻,而SSL证书作为保护网站安全的关键工具,其费用问题自然成为了用户们关注的重点。本文旨在深入分析SSL证书的一年所需成本,帮助用户们合理规划自己的网络安全预算。 我们需要了解SSL证书的基本概念。SSL…

中国 Copilot 能在笔记本电脑上起飞吗?

AI PC 是 PC 的下一个进化体? 中国能打造出自己的 AI 研发助手吗? 企业如何构建 AI 竞争力? AI 时代,个体如何避免被取代? 如果你也有此困惑,那就锁定这场直播吧! 视频号搜索【极狐GitLab】预约…

AI编码工具-通义灵码功能实测

AI编码工具-通义灵码功能实测 通义灵码功能介绍行级/函数级实时续写自然语言生成代码单元测试生成异常排错智能排查生成代码注释生成代码解释研发领域自由问答 在上一篇文章中,我介绍了通义灵码的功能以及支持的操作系统,主流IDE等,详细内容可…

web前端框架设计第八课-表单控件绑定

web前端框架设计第八课-表单控件绑定 一.预习笔记 1.v-model实现表单数据双向绑定 2.搜索数据的实现 3.全选案例实现1—JQ方法 4.单选案例实现 二.课堂笔记 三.课后回顾 –行动是治愈恐惧的良药,犹豫拖延将不断滋养恐惧

图数据库 之 Neo4j 与 AI 大模型的结合绘制知识图谱

引言 随着信息时代的到来,海量的文本数据成为了我们获取知识的重要来源。然而,如何从这些文本数据中提取出有用的信息,并将其以可视化的方式展示出来,一直是一个具有挑战性的问题。近年来,随着人工智能技术的发展&…

Codeforces Round 943 (Div. 3) A~G1

A.Maximize?&#xff08;枚举&#xff09; 题意&#xff1a; 给你一个整数 x x x。你的任务是找出任意一个整数 y y y ( 1 ≤ y < x ) (1\le y\lt x) (1≤y<x)&#xff0c;使得 gcd ⁡ ( x , y ) y \gcd(x,y)y gcd(x,y)y为最大可能数。 ( 1 ≤ y < x ) (1\le y\lt…

青云租受邀出席2024(第十一届)品牌影响力发展大会

武汉青青时代网络科技有限公司倾力打造的共享经济新租赁电商平台“青云租”成功入选“中国最佳商业模式创新奖、中国共享经济十大标杆企业、中国最具投资发展价值轻创业诚信平台”&#xff0c;并将受邀出席2024(第十一届)品牌影响力发展大会暨成果发布活动。 本届活动将于2024…

知名员工上网行为管理系统推荐榜单

上网行为管理软件旨在帮助组织监控和管理员工的网络活动&#xff0c;以提高工作效率、确保网络安全和合规性。以下是一些常见的上网行为管理软件&#xff1a; Ping32&#xff1a;Ping32是一款专业的员工上网行为管理系统&#xff0c;Ping32作为一款专业的员工上网行为管理系统&…

会声会影下载免费中文版 会声会影2023破解 会声会影中文汉化补丁包 会声会影永久激活版序列号免费 会声会影安装使用教程

会声会影是加拿大Corel公司制作的一款功能强大的视频编辑软件&#xff0c;正版英文名&#xff1a;Corel VideoStudio&#xff0c;具有图像抓取和编修功能&#xff0c;可以抓取&#xff0c;转换MV、DV、V8、TV和实时记录抓取画面文件&#xff0c;并提供有超过100 多种的编制功能…

Maven+Junit5 + Allure +Jenkins 搭建 UI 自动化测试实战

文章目录 效果展示Junit 5Junit 5 介绍Junit 5 与 Junit 4 对比PageFactory 模式编写自动化代码公共方法提取测试用例参数化Jenkins 搭建及配置参数化执行生成 Allure 报告Maven 常用命令介绍POM 文件效果展示 本 chat 介绍 UI 自动化测试框架的搭建: 运用 page factory 模式…

活动预约小程序源码系统 自定义预约表单+收费项目 带完整的安装代码包以及系统部署教程

数字化时代的快速发展&#xff0c;活动预约管理已经成为许多企业和个人不可或缺的一部分。为满足这一需求&#xff0c;我们特别开发了一款活动预约小程序源码系统&#xff0c;该系统不仅具备自定义预约表单的功能&#xff0c;还支持收费项目&#xff0c;旨在为用户提供更加便捷…

QT 客户端软件开发

QT 是一种功能强大且灵活的跨平台应用程序开发框架&#xff0c;但也存在一些技术难点&#xff0c;需要开发者仔细考虑和克服。以下是一些常见的 QT 软件开发的技术难点。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1. 跨平台兼容性…