【C++历练之路】红黑树——map与set的封装实现

W...Y的个人主页💕

gitee代码仓库分享😊 

 


前言:上篇博客中,我们为了使二叉搜索树不会出现”一边倒“的情况,使用了AVL树对搜索树进行了处理,从而解决了数据在有序或者接近有序时出现的情况。但是AVL树还会有一大缺陷就是其性能的原因,当我们在使其满足AVL树的规则时,其付出的旋转代价是非常大的,所以经常修改的结构就不适合AVL树。但是红黑树就可以补足AVL树的缺陷。

目录

1. 红黑树

1.1 红黑树的概念

1.2 红黑树的性质 

 1.3红黑树节点的定义

 1.4红黑树的插入

1.5 红黑树与AVL树的比较 

2. 红黑树模拟实现STL中的map与set

2.1 红黑树的迭代器

2.2 红黑树的改写与迭代器完整代码

2.3 map的封装

2.4 set的封装


1. 红黑树

1.1 红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或
Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路
径会比其他路径长出俩倍,因而是接近平衡的。

假设最短路径为h,则最长路径为2h。 

1.2 红黑树的性质 

1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点必须是黑色的
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

为什么满足上述性质,红黑树就可以保证其最长路径的节点树不会超过最短路径的两倍呢?  

 前两个性质非常通俗易懂,我们从第三个性质开始解读:

3.没有连续的两个红色节点。

4.每条路径的黑色节点数是相同的。

所以我们就可以假设一颗红黑树中每条路径有两个黑色节点(满足性质4),那最短路径只可能是全黑节点,最长路径一定是一黑一红节点(假设最短路径与最长路径都存在),那么红色节点只能在黑色节点中间插入,这样才能满足性质3,所以红黑树就可以保证其最长路径的节点树不会超过最短路径的两倍。

对比AVL树与红黑树的结构,其AVL树的高度近似logN,而红黑树的高度近似2logN,所以相对于AVL树,红黑树的搜索效率差一些,但是几乎可以忽略不计,因为logN足够小,所以他们之间的搜索差距微乎其微。

 1.3红黑树节点的定义

enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv),_col(RED){}
};

在节点定义时我们默认将节点设置成红色节点,这样如果出现连续的红色节点时,我们可以进行变色操作,通过维护一个子树来使红黑树合法,但是如果插入一个黑色节点时,我们就无法下手,因为每条路的黑色节点数必须相同,这样我们无法很好的进行操作使其合法化。 

 1.4红黑树的插入

 红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

1. 按照二叉搜索的树规则插入新节点:

class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv); // 红色的if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;
}
private:Node* _root = nullptr;
};

2. 检测新节点插入后,红黑树的性质是否造到破坏:
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何
性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连
在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点 

 情况一: cur为红,p为红,g为黑,u存在且为红

解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。 

情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑

 如果u存在且为黑, 则cur一定不是新增节点,因为这样就不满足性质4:每条路径黑色节点个数相同。所以我们将上面图补充完整就是下图所示,先是由情况一进行调整,然后向上调整后才得到上图。所以情况一向上调整后的情况不一定又是情况一!!

这时我们就无法用情况一的做法进行调整, 如果继续用情况一法则已经违反规则了。左右极度不均衡只能进行选择,这时我们就可以类比使用AVL树中的旋转法则。(旋转+变色)

p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色--p变黑,g变红

在变色时我们不区分其p与u节点的左右,但是在旋转时我们就要进行区分。

情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑 

 这种情况并不是一边高,而是两边都高左边高右边也高。所以我们得使用左右/右左双旋转。

p为g的左孩子,cur为p的右孩子,左右双旋+变色

p为g的右孩子,cur为p的左孩子,右左双旋+变色

针对每种情况进行相应的处理即可。

bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv); // 红色的if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色if (cur == parent->_left){//       g//    p    u// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//       g//    p     u//      cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;} }else{Node* uncle = grandfather->_left;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateL(Node* parent){++rotateSize;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}}void RotateR(Node* parent){++rotateSize;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}

1.5 红黑树与AVL树的比较 

 红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O($log_2 N$),红黑树不追
求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,
所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红
黑树更多。

2. 红黑树模拟实现STL中的map与set

我们模拟实现了红黑树,接下来就是对map与set的封装。

我们通过观察其stl源码切入进行仿写:

 我们发现无论是map还是set都复用的一个红黑树,模板参数都是k,v模型。通过源码我们可以发现:set<k> -> rb_tree<k,k> map<k,v> ->rb_tree<k,pair<const k,v>>。所以节点中存什么内容是由v决定的,不是k决定的。将红黑树写成泛型,所以我们必须将上面写的红黑树的模板进行修改!

进行封装后就可以解决复用红黑树的模板。 

 但是使用红黑树的模板时,set和map所比较的对象不一样,因为set比较的就是key,而map比较的是value,所以我们就得使用仿函数进行操作,我们创建keyoft仿函数取出T对象中的key即可。

//set
struct SetKeyOfT{const K& operator()(const K& key){return key;}};//map
struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};

2.1 红黑树的迭代器

首先我们得封装一个红黑树的迭代器用来实现++、--、*、->、!=。这里的迭代器与list的迭代器非常类似,可以用一个指针来实现其内容。但是++与--必须确定下一个与上一个节点的关系,这里我们可以使用中序遍历解决,但是得用一个栈来辅助,这里我们不想使用这样的方法,我们可以找规律来实现:

++逻辑

1.it指向节点,右不为空,下一个就是右子树的最左节点

2.it指向节点,右为空,意味着这个节点的子树中序访问完了,下一个节点找祖先里面的孩子==父亲左的那个祖先。

--逻辑与++相反!

这样迭代器就很好解决了:

template<class T>
struct RBTreeIterator
{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T> Self;Node* _node;RBTreeIterator(Node* node):_node(node){}T& operator*(){return _node->_data;}T* operator->(){return &_node->_data;}Self& operator++(){if (_node->_right){// 右子树的中序第一个(最左节点)Node* subLeft = _node->_right;while (subLeft->_left){subLeft = subLeft->_left;}_node = subLeft;}else{// 祖先里面孩子是父亲左的那个Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}Self& operator--(){// return *this;}bool operator!=(const Self& s){return _node != s._node;}bool operato == (const Self & s){return _node == s._node;}
};

迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代
器,需要考虑以前问题:

begin()与end()
STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后,
可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位
置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪块?
能否给成nullptr呢?答案是行不通的,因为对end()位置的迭代器进行--操作,必须要能找最
后一个元素,此处就不行,因此最好的方式是将end()放在头结点的位置: 

typedef RBTreeIterator<T> iterator;iterator begin()
{Node* subLeft = _root;while (subLeft && subLeft->_left){subLeft = subLeft->_left;}return iterator(subLeft);
}iterator end()
{return iterator(nullptr);
}
//map
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;
iterator begin()
{return _t.begin();
}iterator end()
{return _t.end();
}bool insert(const pair<K, V>& kv)
{return _t.Insert(kv);
}
//settypedef typename RBTree<K, const K, SetKeyOfT>::iterator iterator;iterator begin()
{return _t.begin();
}iterator end()
{return _t.end();
}bool insert(const K& key)
{return _t.Insert(key);
}

2.2 红黑树的改写与迭代器完整代码

#pragma once
#include<vector>enum Colour
{RED,BLACK
};template<class T>
struct RBTreeNode
{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Colour _col;T _data;RBTreeNode(const T& data):_left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _col(RED){}
};template<class T>
struct RBTreeIterator
{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T> Self;Node* _node;RBTreeIterator(Node* node):_node(node){}T& operator*(){return _node->_data;}T* operator->(){return &_node->_data;}Self& operator++(){if (_node->_right){// 右子树的中序第一个(最左节点)Node* subLeft = _node->_right;while (subLeft->_left){subLeft = subLeft->_left;}_node = subLeft;}else{// 祖先里面孩子是父亲左的那个Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}Self& operator--(){// return *this;}bool operator!=(const Self& s){return _node != s._node;}bool operato == (const Self & s){return _node == s._node;}
};// set->RBTree<K, K, SetKeyOfT>
// map->RBTree<K, pair<K, V>, MapKeyOfT>// KeyOfT仿函数 取出T对象中的key
template<class K, class T, class KeyOfT>
class RBTree
{typedef RBTreeNode<T> Node;
public:typedef RBTreeIterator<T> iterator;iterator begin(){Node* subLeft = _root;while (subLeft && subLeft->_left){subLeft = subLeft->_left;}return iterator(subLeft);}iterator end(){return iterator(nullptr);}bool Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return true;}KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(data); // 红色的if (kot(parent->_data) < kot(data)){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色if (cur == parent->_left){//       g//    p    u// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//       g//    p     u//      cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{Node* uncle = grandfather->_left;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}}private:Node* _root = nullptr;
};

2.3 map的封装

namespace why
{template<class K, class V>class map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}bool insert(const pair<K, V>& kv){return _t.Insert(kv);}private:RBTree<K, pair<const K, V>, MapKeyOfT> _t;};
}

2.4 set的封装

#include"RBTree.h"
namespace why
{template<class K>class set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:typedef typename RBTree<K, const K, SetKeyOfT>::iterator iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}bool insert(const K& key){return _t.Insert(key);}private:RBTree<K, const K, SetKeyOfT> _t;};
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3018689.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

创建Chrome插件:自动刷新网页

创建Chrome插件&#xff1a;自动刷新网页 前言 在日常工作和生活中&#xff0c;我们经常需要频繁刷新网页以获取最新的数据和信息。无论是开发人员进行网站测试&#xff0c;还是用户关注实时股市动态&#xff0c;手动刷新网页既耗时又低效。因此&#xff0c;本文将介绍如何创…

LeetCode--所有质数、质数对

1.0 Q: 输出 100 以内所有质数 1.1 /* 第一层循环控制检查到哪个数* 第二层通过遍历除以每个比他小的数的方式,检查每个数是不是质数* 由于要遍历检查,设置一个标记,只要任意一次循环可以整除,我们就设置该标记为不是质数 */boolean isPrime true;for (int i 2; i < 100…

RDB快照是怎么实现的?

RDB快照是怎么实现的&#xff1f; 前言快照怎么用&#xff1f;执行快照时&#xff0c;数据能被修改吗&#xff1f;RDB 和 AOF 合体 前言 虽说 Redis 是内存数据库&#xff0c;但是它为数据的持久化提供了两个技术。 分别是「 AOF 日志和 RDB 快照」。 这两种技术都会用各用一…

鸿蒙OpenHarmony南向:【Hi3516标准系统入门(IDE方式)】

Hi3516标准系统入门&#xff08;IDE方式&#xff09; 注意&#xff1a; 从3.2版本起&#xff0c;标准系统不再针对Hi3516DV300进行适配验证&#xff0c;建议您使用RK3568进行标准系统的设备开发。 如您仍然需要使用Hi3516DV300进行标准系统相关开发操作&#xff0c;则可能会出现…

【排序算法】之快速排序

一、算法介绍 快速排序(Quick sort)是由C.A.R.Hoare提出来的。快速排序法又叫分割交换排序法&#xff0c;是目前公认的最佳排序法&#xff0c;也是使用“分而治之”的方式&#xff0c;会先在数据中找到一个虚拟的中间值&#xff0c;并按此中间值将所有打算排序的数据分为两部分…

未来娱乐新地标?气膜球幕影院的多维体验—轻空间

在中国&#xff0c;一座独特的娱乐场所正在崭露头角&#xff1a;气膜球幕影院。这个融合了气膜建筑与激光投影技术的创新场所&#xff0c;不仅令人惊叹&#xff0c;更带来了前所未有的科幻娱乐体验。让我们一起探索这个未来的娱乐空间&#xff0c;感受其中的多维魅力。 现场演出…

java语言数据结构(单链表)

前言 不得承认java应用的广泛&#xff0c;所以毅然决定java版本的数据结构和算法专题还是要坚决更新。每日更新2题&#xff0c;希望学习的小伙伴可以关注一波跟上&#xff0c;评论区欢迎讨论交流。 实现原理 节点&#xff08;Node&#xff09;&#xff1a;链表的基本构建单元…

微信小程序(Taro)获取经纬度并转化为具体城市

1、获取经纬度 申请权限&#xff0c;想要使用微信小程序获取经纬度的方法是要申请该方面的权限。 获取经纬度的方法有很多选择其中一个使用就好。 我使用的是Taro.getFuzzyLocation(&#xff09; 在app.config.js中需要添加设置 requiredPrivateInfos: ["getFuzzyLocat…

Raft共识算法图二解释

下面是有关Raft协议中不同术语和概念的翻译及解释&#xff1a; 术语和概念&#xff1a; 任期号&#xff08;term number&#xff09;&#xff1a;用来区分不同的leader。前一个日志槽位的信息&#xff08;prelogIndex&#xff09;&#xff1a;这是前一个日志条目的索引&#…

集成逻辑分析器( ILA)IP核用法详解

集成逻辑分析器&#xff08;Integrated Logic Analyzer, ILA&#xff09;IP核是一个可定制的逻辑分析器&#xff0c;用于监测设计的内部信号。ILA核心包含了现代逻辑分析器的许多高级特性&#xff0c;比如布尔触发方程&#xff08;boolean trigger equations&#xff09;和边沿…

H5视频付费点播打赏影视系统程序全开源运营版

这是一款视频打赏源码&#xff0c;勿做非法用途&#xff0c;由用户亲测功能完善&#xff0c;源码仅用于学习使用&#xff0c;分享链接是用户云盘&#xff0c;具有时效性&#xff0c;感兴趣的可以去学习。 thinkphp开发&#xff0c;前后端分离设计&#xff0c;支持游客登陆、VIP…

了解集合与数据结构(java)

什么是数据结构? 数据结构就是 数据结构, 功能就是描述和组织数据 比如我有10万个QQ号, 我来组织, 有很多种组织方法, 比如链表, 树, 堆, 栈等等. 假如QQ号要查找数据, 有种数据结构查找数据速度很快, 我们就用它 加入QQ号要进行删除数据, 有种数据结构删除速度很快, 我们…

Python中设计注册登录代码

import hashlib import json import os import sys # user interface 用户是界面 UI """ 用户登录系统 1.注册 2.登陆 0.退出 """ # 读取users.bin def load(path): return json.load(open(path, "rt")) # 保存user.bin def save(dic…

Covalent引入五个新网络运营商,提升去中心化特性和数据安全性

为了进一步扩大运营商基础以并践行去中心化网络基础设施的宗旨&#xff0c;Covalent Network&#xff08;CQT&#xff09;在网络中引入了五个新的区块样本生产者&#xff08;BSPs&#xff09;角色。该举措不仅重申了 Covalent Network&#xff08;CQT&#xff09;对社区驱动协议…

如何保护数据安全?迅软DSE加密系统给信息撑把保护伞!

信息安全当然需要保护&#xff0c;不然企业的信息可以发给任何人&#xff0c;普通信息还好&#xff0c;如果是重要机密呢&#xff0c;企业重要信息被发出去后可能会造成一些麻烦&#xff0c;所以可以使用加密系统&#xff0c;对数据进行安全保护&#xff0c;防止泄密问题&#…

pandas 预处理

文章目录 第1关&#xff1a;数据读取与合并第2关&#xff1a;数据清洗第3关&#xff1a;数据转换 第1关&#xff1a;数据读取与合并 任务描述 本关任务&#xff1a;加载 csv 数据集&#xff0c;实现 DataFrame 合并。 知识讲解 Pandas 模块导入 import pandas as pd 读取 cs…

如何在没有备份的情况下恢复 Mac 上丢失的数据

如果您因意外删除、错误格式化硬盘或文件损坏而丢失了重要的、感伤的文件、照片或音乐&#xff0c;那么这可能会令人非常痛苦。幸运的是&#xff0c;您有几个选择。 您的 Mac 位于数字宇宙的中心。您可能会在上面留下照片和视频形式的记忆&#xff0c;以及来自您不再见面的朋友…

[嵌入式系统-69]:RT-Thread-组件:网络组件“组”,RT-Thread系统通向外部网络世界的入口

目录 RT-Thread 提供的网络世界入口 - 网络组件 1. 总概 2. AT 3. Lwip&#xff1a; 轻量级IP协议栈 4. W5500 5. Netdev 6. RT-Thread SAL&#xff08;Socket Abstraction Layer&#xff09;套接字和BSD套接字区别 RT-Thread SAL 套接字接口示例 BSD 套接字接口示例 …

css: hover 划过显示/隐藏 div 样式

1. 图例: 划过用display: block;和 display: none; 显示div和隐藏div div: <div class="sectorBox"> <div v-for="(item, index) in sectorList" :key="index" class="sill"> <div class="si…

大数据Scala教程从入门到精通第五篇:Scala环境搭建

一&#xff1a;安装步骤 1&#xff1a;scala安装 1&#xff1a;首先确保 JDK1.8 安装成功: 2&#xff1a;下载对应的 Scala 安装文件 scala-2.12.11.zip 3&#xff1a;解压 scala-2.12.11.zip 4&#xff1a;配置 Scala 的环境变量 在Windows上安装Scala_windows安装scala…