多目标灰狼算法(MOGWO):原理讲解与代码实现 Matlab代码免费获取

       声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~ 

目录

原理简介

一、Pareto最优概念

二、单目标GWO

三、多目标GWO优化机制

四、整体算法流程

代码实现


        今天为大家带来一期多目标灰狼算法(MOGWO)代码,该算法由 Seyedali Mirjalili 等人于 2016 年发表在SCI一区顶刊《Expert Systems With Applications》上!

        目前,MOGWO已经被广泛应用于如能源系统优化、物流路径优化、参数调优等不同场景,相比于单目标算法,多目标算法考虑的内容更多,更容易受到审稿人的青睐。

        本期代码免费赠送,需要代码的小伙伴可直接拉到最后!

原理简介

一、Pareto最优概念

        多目标灰狼优化算法 (Multi-objective Grey Wolf Optimizer, MOGWO)是灰狼优化算法(GWO)的多目标版本,旨在解决多准则下无法比较多目标空间中解的优劣问题,因此引入了Pareto最优解集的概念。

        以最小化为例,解A对解B在某个目标函数上存在f(A)<f(B),则称解A支配解B。在解集内,找不到其他解在所有目标函数上都优于解A的解,则解A为Pareto最优解,这一类解组成的集合为Pareto最优解集,而Pareto前沿则由Pareto最优解的目标函数值组成。

二、单目标GWO

        为了更好地了解MOGWO,首先介绍一下单目标GWO原理。单目标GWO通过模仿灰狼捕猎行为进行寻优,其数学模型如下:

        式中:t为当前迭代次数;Xα、Xβ和Xδ为阿尔法狼、贝塔狼和德尔塔狼的位置向量;X为灰狼的位置向量;A和C是系数向量。其计算如下:

        式中:a在迭代过程中线性地从2减少到0;r1和r2则是[0,1]的随机向量。

三、多目标GWO优化机制

        不同于传统的单目标算法,多目标算法能够通过寻找帕累托解平衡多个相互竞争的目标。而MOGWO相比于其他多目标算法,则有两个较为明显的改进,一是引入存档机制,二是改进头狼选择方式

        第一,存档机制。外部存档Archive保存到目前为止获得Pareto最优解,在迭代中新得到的非支配解与存档中的常驻解采用以下处理方式:

(1)新个体被至少以一个存档中的常驻解支配时,新个体不被允许进入存档。

(2)新个体支配存档中的一个或多个解时,新个体进入存档,存档内被支配的解则被省略掉。

(3)如果新个体与存档内的解都不相互支配,则应将新个体加入存档。

(4)当存档已满时,运行网格机制重新安排目标空间的分割,去掉最拥挤的部分的一个解,将新解插入到最不拥挤的位置,以提高Pareto前沿的多样性。

        第二,改进头狼选择方式。为选择出合适的三匹头狼(α狼、β狼、δ狼),通过轮盘赌法在Archive中最不拥挤的部分按照如下概率选择头狼:

        式中:c为大于1的常数;Ni为该第i组中Pareto最优解个数。

四、整体算法流程

        MOGWO的具体流程如下:

        (1)设置算法的种群数量、最大迭代次数,设置外部存档Archive大小、轮盘赌法参数等。

        (2)计算种群个体的目标参数值,确定支配关系,将非支配解存入Archive中。

        (3)根据外部存档中的拥挤度,依据轮盘赌法确定头狼(α狼、β狼、δ狼)。

        (4)利用得到的头狼更新种群个体位置并计算目标函数值。

        (5)比较新的种群个体与存档中个体的支配关系,确定新的非支配解更新存档。

        (6)对步骤(3)、步骤(4)和步骤(5)迭代运行,达到迭代上限停止,输出Archive解。

代码实现

        MOGWO核心代码如下:

clear
clc
drawing_flag = 1;
nVar=5;%%  测试函数
fobj=@(x) ZDT3(x);%%  MOGWO算法参数
lb=zeros(1,5);
ub=ones(1,5);
VarSize=[1 nVar];
GreyWolves_num=100;    % 种群数量
MaxIt=50;              % 迭代次数
Archive_size=100;      % 存档数量%%  网格机制的参数
alpha=0.1;             % Grid Inflation Parameter
nGrid=10;              % Number of Grids per each Dimension
beta=4;                % Leader Selection Pressure Parameter
gamma=2;               % Extra (to be deleted) Repository Member Selection Pressure%%  种群初始化
GreyWolves=CreateEmptyParticle(GreyWolves_num);
for i=1:GreyWolves_numGreyWolves(i).Velocity=0;GreyWolves(i).Position=zeros(1,nVar);for j=1:nVarGreyWolves(i).Position(1,j)=unifrnd(lb(j),ub(j),1);endGreyWolves(i).Cost=fobj(GreyWolves(i).Position')';GreyWolves(i).Best.Position=GreyWolves(i).Position;GreyWolves(i).Best.Cost=GreyWolves(i).Cost;
end%%  确定支配关系
GreyWolves=DetermineDomination(GreyWolves);%%  非支配解存档
Archive=GetNonDominatedParticles(GreyWolves);%%  网格机制
Archive_costs=GetCosts(Archive);
G=CreateHypercubes(Archive_costs,nGrid,alpha);for i=1:numel(Archive)[Archive(i).GridIndex Archive(i).GridSubIndex]=GetGridIndex(Archive(i),G);
end%%  主程序迭代
for it=1:MaxIta=2-it*((2)/MaxIt);for i=1:GreyWolves_numclear rep2clear rep3% Choose the alpha, beta, and delta grey wolvesDelta=SelectLeader(Archive,beta);Beta=SelectLeader(Archive,beta);Alpha=SelectLeader(Archive,beta);% If there are less than three solutions in the least crowded% hypercube, the second least crowded hypercube is also found% to choose other leaders from.if size(Archive,1)>1counter=0;for newi=1:size(Archive,1)if sum(Delta.Position~=Archive(newi).Position)~=0counter=counter+1;rep2(counter,1)=Archive(newi);endendBeta=SelectLeader(rep2,beta);end% This scenario is the same if the second least crowded hypercube% has one solution, so the delta leader should be chosen from the% third least crowded hypercube.if size(Archive,1)>2counter=0;for newi=1:size(rep2,1)if sum(Beta.Position~=rep2(newi).Position)~=0counter=counter+1;rep3(counter,1)=rep2(newi);endendAlpha=SelectLeader(rep3,beta);end% Eq.(3.4) in the paperc=2.*rand(1, nVar);% Eq.(3.1) in the paperD=abs(c.*Delta.Position-GreyWolves(i).Position);% Eq.(3.3) in the paperA=2.*a.*rand(1, nVar)-a;% Eq.(3.8) in the paperX1=Delta.Position-A.*abs(D);% Eq.(3.4) in the paperc=2.*rand(1, nVar);% Eq.(3.1) in the paperD=abs(c.*Beta.Position-GreyWolves(i).Position);% Eq.(3.3) in the paperA=2.*a.*rand()-a;% Eq.(3.9) in the paperX2=Beta.Position-A.*abs(D);% Eq.(3.4) in the paperc=2.*rand(1, nVar);% Eq.(3.1) in the paperD=abs(c.*Alpha.Position-GreyWolves(i).Position);% Eq.(3.3) in the paperA=2.*a.*rand()-a;% Eq.(3.10) in the paperX3=Alpha.Position-A.*abs(D);% Eq.(3.11) in the paperGreyWolves(i).Position=(X1+X2+X3)./3;% Boundary checkingGreyWolves(i).Position=min(max(GreyWolves(i).Position,lb),ub);GreyWolves(i).Cost=fobj(GreyWolves(i).Position')';endGreyWolves=DetermineDomination(GreyWolves);non_dominated_wolves=GetNonDominatedParticles(GreyWolves);Archive=[Archivenon_dominated_wolves];Archive=DetermineDomination(Archive);Archive=GetNonDominatedParticles(Archive);for i=1:numel(Archive)[Archive(i).GridIndex Archive(i).GridSubIndex]=GetGridIndex(Archive(i),G);endif numel(Archive)>Archive_sizeEXTRA=numel(Archive)-Archive_size;Archive=DeleteFromRep(Archive,EXTRA,gamma);Archive_costs=GetCosts(Archive);G=CreateHypercubes(Archive_costs,nGrid,alpha);enddisp(['In iteration ' num2str(it) ': Number of solutions in the archive = ' num2str(numel(Archive))]);save results% Resultscosts=GetCosts(GreyWolves);Archive_costs=GetCosts(Archive);if drawing_flag==1hold offplot(costs(1,:),costs(2,:),'k.');hold onplot(Archive_costs(1,:),Archive_costs(2,:),'r*');legend('灰狼种群','非支配解');set(gcf,'color','w')drawnowendend

        代码里提供了四种多目标函数,分别为ZDT1、ZDT2、ZDT3、ZDT4,大家可以自行切换,以ZDT3为例:

        这是迭代过程图,图中可以很清晰的显示灰狼种群与各非支配解,在迭代完成后选择需要的非支配解即可。

        其中有部分函数封装为了子函数,文章中无法全部放下。因此,需要完整代码的小伙伴只需点击下方小卡片,后台回复关键词,不区分大小写:

MOGWO

        若有其他更多代码需求或免费代码,可查看链接:更多代码链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3015306.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

高实时、高可靠的微内核操作系统——鸿道Intewell

近年来&#xff0c;我国不断推进工业转型升级&#xff0c;力求实现从传统工业大国向现代工业强国的跨越。想要在新一轮科技革命中“超车”&#xff0c;需要从多个维度进行深度布局和全面发力。 ——科技创新是核心驱动力 积极推动工业结构的优化和升级&#xff0c;通过发展新…

求知导刊-知网收录//旬刊//如何投稿?

求知导刊-知网收录//旬刊//如何投稿&#xff1f; 《求知导刊》栏目设置 理论探索、课堂教学、教改课改、教育管理、教师教育、教学案例、学科进展、学术论坛。 《求知导刊》征稿对象&#xff1a; 全国科技工作者、教育工作者&#xff0c;各级科技与教育部门的领导者以及管理…

面试笔记——工厂模式(简单工厂、工厂方法模式、抽象工厂模式)

场景需求&#xff1a;设计一个咖啡店点餐系统。 设计一个咖啡类&#xff08;Coffee&#xff09;&#xff0c;并定义其两个子类&#xff08;美式咖啡【AmericanCoffee】和拿铁咖啡【LatteCoffee】&#xff09;&#xff1b;再设计一个咖啡店类&#xff08;CoffeeStore&#xff09…

深度学习之基于YOLOv5草莓成熟度目标检测系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景与意义 草莓作为一种广受欢迎的水果&#xff0c;其成熟度的判断对于保证草莓的品质和口感至关重要。然…

python直接发布到网站wordpress之三批量发布图片

在前面的文章中&#xff0c;实现了使用python操作wordpress发布文字内容和图片内容。 python直接发布到网站wordpress之一只发布文字-CSDN博客 python直接发布到网站wordpress之二发布图片-CSDN博客 不过&#xff0c;此时发布图片的数量只能是一张图片。但在实际应用中&…

VINS预积分与误差模型

文章目录 IMU的测量值误差模型IMU预积分真实模型IMU预积分估计模型误差模型普通增量积分中值积分法 参考文献 IMU的测量值误差模型 IMU的测量值误差模型&#xff1a; a ^ t a t R w t g w b a t n a t ω ^ t ω t b ω t n ω t \begin{array}{} {{{\hat a}_t} {a_t…

10页面结构分析

我们打开一个网页&#xff0c;都会有一个清晰的结构和布局上图中的标签就是用来划分各个部分区域用的。其中比较常用重要的是header、footer和nav&#xff0c;需要重点掌握。 下面是部分代码及效果演示 <header> <h2>网页头部</h2> </header><sec…

C++实现二叉搜索树(模型)

目录 1.二叉搜索树的概念 2.二叉搜索树的实现 2.1总体代码预览 2.2各个函数实现原理 链表结构体 二叉搜索树的成员变量 二叉搜索树的插入 二叉搜索树的查找 二叉搜索树的遍历 二叉搜索树的删除 1.二叉搜索树的概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一棵空树&#…

AI去衣技术在动画制作中的应用

随着科技的发展&#xff0c;人工智能&#xff08;AI&#xff09;已经在各个领域中发挥了重要作用&#xff0c;其中包括动画制作。在动画制作中&#xff0c;AI去衣技术是一个重要的工具&#xff0c;它可以帮助动画师们更加高效地完成工作。 AI去衣技术是一种基于人工智能的图像…

jenkins目录下的vue3项目——pnpm install后运行报错——奇葩问题解决

昨天到今天&#xff0c;同事那边遇到一个问题&#xff0c;就是关于vue3vite的项目&#xff0c;在执行了自动打包后&#xff0c;运行代码会提示报错的问题。 报错信息如下&#xff1a; 具体错误信息如下&#xff1a; ERROR 11:28:14 [vite] Pre-transform error: Cannot find …

C语言实战项目---通讯录

项目要实现的内容&#xff1a;能够存放100个人的通讯录程序&#xff0c;能够实现联系人数据的存储&#xff0c;删除&#xff0c;修改&#xff0c;查找&#xff0c;展示联系人的信息。 所需知识&#xff1a;结构体&#xff0c;指针&#xff0c;函数................. 废话不多…

AI绘画成果展(第一期)

免费获取更多原图&#xff0c;备注“AI绘画”&#xff0c;可在文章末尾点击名片进qun获取。 免费获取更多原图&#xff0c;备注“AI绘画”&#xff0c;可在文章末尾点击名片进qun获取。

pandas索引

pandas索引 一、索引1.1 建立索引1.2 重置索引1.3 索引类型1.4 索引的属性1.5 索引的操作 一、索引 1.1 建立索引 建立索引可以在数据读取加载中指定索引&#xff1a; import pandas as pd df pd.read_excel(team.xlsx, index_colname) # 将name列设置为索引 df.head()效…

Hadoop3:HDFS的架构组成

一、官方文档 我这里学习的是Hadoop3.1.3版本&#xff0c;所以&#xff0c;查看的也是3.1.3版本的文档 Architecture模块最下面 二、HDFS架构介绍 HDFS架构的主要组成部分&#xff0c;是一下四个部分 1、NameNode(NN) 就是Master节点&#xff0c;它是集群管理者。 1、管…

解决 SyntaxError: Unexpected token ‘.‘ 报错问题

这个报错一般是编译问题&#xff0c;浏览器的版本过低没通过代码 解决办法&#xff1a; 在package.json文件中加上这个 "browserslist": ["> 1%","last 2 versions","not dead","not ie < 6","Android > 4&…

Web 3.0时代:软文发稿对企业品牌的影响

Web 3.0的到来&#xff0c;标志着我们已经进入了一个全新的互联网时代。在这个新时代中&#xff0c;信息的生成和传播有了更多的可能性和更广的空间。作为企业品牌宣传的重要手段之一的软文发稿&#xff0c;在Web 3.0时代将会面临什么样的挑战和机遇&#xff1f; 首先&#xf…

人脸美型SDK解决方案,适用于各类应用场景

视频内容已经成为企业宣传、产品展示、互动直播等多个领域的核心载体。而在这些场景中&#xff0c;高质量的人脸美型效果不仅能够提升用户体验&#xff0c;更能为品牌加分。美摄科技凭借深厚的技术积累和行业洞察&#xff0c;推出了全新的人脸美型SDK解决方案&#xff0c;为企业…

Fizzler库+C#:从微博抓取热点的最简单方法

概述 在这篇技术文章中&#xff0c;我们将深入研究如何利用Fizzler库结合C#语言&#xff0c;以实现从微博平台抓取热点信息的功能。微博作为中国乃至全球范围内具有重要影响力的社交媒体平台之一&#xff0c;在互联网信息传播中扮演着举足轻重的角色。通过Fizzler这一强大的.N…

Sarcasm detection论文解析 |CAT-BiGRU

论文地址 论文地址&#xff1a;CAT-BiGRU: Convolution and Attention with Bi-Directional Gated Recurrent Unit for Self-Deprecating Sarcasm Detection | Cognitive Computation github:Ashraf-Kamal/Self-Deprecating-Sarcasm-Detection (github.com) 论文首页 笔记框架 …

什么软件能在桌面提醒我 电脑桌面提醒软件

在这个信息爆炸的时代&#xff0c;我们每个人每天都需要处理海量的信息和任务。有时候&#xff0c;即便是再细心的人&#xff0c;也难免会因为事情太多而忘记一些重要的细节。 我就经常遇到这样的问题&#xff0c;明明记得自己有个重要的会议要参加&#xff0c;或者有个关键的…