经典的目标检测算法有哪些?

一、经典的目标检测算法有哪些?

目标检测算法根据其处理流程可以分为两大类:One-Stage(单阶段)算法和Two-Stage(两阶段)算法。以下是一些经典的目标检测算法:

单阶段算法:

  • YOLO (You Only Look Once): 是一种非常快速的目标检测算法,它将目标检测任务作为回归问题来解决,直接在图像中预测边界框和类别概率。
  • SSD (Single Shot MultiBox Detector): 通过在不同尺度的特征图上进行检测,能够有效地检测出不同大小的目标,速度和精度都较为平衡。
  • RetinaNet: 引入了Focal Loss来解决类别不平衡问题,提高了模型对于难分样本的识别能力,从而提升了检测性能。

两阶段算法:

  • R-CNN (Region-based Convolutional Neural Networks): 是最早的深度学习目标检测模型之一,它首先生成候选区域,然后对每个区域进行卷积神经网络特征提取,并使用支持向量机(SVM)进行分类,最后通过边界框回归精确定位目标位置。
  • Fast R-CNN: 在R-CNN的基础上进行了改进,使用全卷积网络提取图像特征,并通过区域池化操作将不同尺寸的候选区域对齐到固定尺寸的特征图上,然后进行分类和边界框回归。
  • Faster R-CNN: 引入了区域提议网络(RPN)来生成高质量的候选区域,进一步提高了检测的速度和精度。

这些算法各有优势,选择哪种算法通常取决于具体应用场景中对速度和精度的要求。

二、YOLO 的简单例子

from ultralytics import YOLO# 加载模型
model = YOLO('E:\PycharmProjects\\yolov8n.pt')# 识别图片的物体
results = model(['E:\\testImage\\cat1.png', 'E:\\testImage\\heixiong.jpg'])# 处理图片列表
for result in results:boxes = result.boxes  # Boxes object for bounding box outputsmasks = result.masks  # Masks object for segmentation masks outputskeypoints = result.keypoints  # Keypoints object for pose outputsprobs = result.probs  # Probs object for classification outputsresult.show()  # display to screenresult.save(filename='result.jpg')  # save to disk
输出的结果图片:

 

模型下载地址:

Detect - Ultralytics YOLOv8 DocsOfficial documentation for YOLOv8 by Ultralytics. Learn how to train, validate, predict and export models in various formats. Including detailed performance stats.icon-default.png?t=N7T8https://docs.ultralytics.com/tasks/detect/

三、“糟心的PIP源

安装:

pip install ultralytics

但是总是很糟心的timeout

换国内的源速度杠杠的,分分钟搞定!!!

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

 国内的其他pip源:

# 清华

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

# 阿里

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/

# 腾讯

pip config set global.index-url http://mirrors.cloud.tencent.com/pypi/simple

# 豆瓣

pip config set global.index-url http://pypi.douban.com/simple/ 

四、如果PIP不可用,咋办?

如果PIP不可用?请检查PIP的路径是否加入到path(本说明仅限windows平台)

报错:

pip : 无法将“pip”项识别为 cmdlet

配置成功后测试:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2980996.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

vue项目使用百度地图

打开百度地图开放平台 百度地图开放平台 | 百度地图API SDK | 地图开发 在控制台新建应用 复制访问应用的ak 可修改地图样式 使用部分 <!-- 引入地图 --><div class"main-aside"><div id"b-map-container"></div></div> …

Stable Diffusion WebUI 使用 LoRA 调整风格——详细教程

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里&#xff0c;订阅后可阅读专栏内所有文章。 大家好&#xff0c;我是水滴~~ 本教程旨在深入探讨 LoRA 模型的奥秘&#xff0c;涵盖其基本概念、独特作用以及实操指南。我们将从下载和使用LoRA的步…

详解数据结构:队列(含栈与队列扩展)

一、顺序队列 有一种线性序列&#xff0c;特点是先进先出&#xff0c;这种存储结构称为队列。队列也是一种线性表&#xff0c;只不过它是操作受限的线性表&#xff0c;只能再两端操作&#xff1a;一端进、一端出。进的一端称为队尾&#xff0c;出的一端称为队头。队列可以用顺…

贪心算法在单位时间任务调度问题中的应用

贪心算法在单位时间任务调度问题中的应用 一、引言二、问题描述与算法设计三、算法证明四、算法实现与效率分析五、C语言实现示例六、结论 一、引言 单位时间任务调度问题是一类经典的优化问题&#xff0c;旨在分配任务到不同的时间槽中&#xff0c;使得某种性能指标达到最优。…

RTU遥测终端为城市排水安全保驾护航!

近年来&#xff0c;全球气候变迁与城市化进程不断加速&#xff0c;导致强降雨事件频发&#xff0c;道路低洼地带、下穿式立交桥和隧道等区域在暴雨中常易积水&#xff0c;严重阻碍了人民的出行&#xff0c;甚至危及生命与财产安全。而传统的排水管网管理方式已难以适应现代城市…

elasticsearch-8.1.0安装记录

目录 零、版本说明一、安装二、使用客户端访问 零、版本说明 centos [rootnode1 ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core)elasticsearch elasticsearch-8.1.0-linux-x86_64一、安装 systemctl stop firewalld.servicesystemctl disable firewal…

MATLAB 数据类型

MATLAB 数据类型 MATLAB 不需要任何类型声明或维度语句。每当 MATLAB 遇到一个新的变量名&#xff0c;它就创建变量并分配适当的内存空间。 如果变量已经存在&#xff0c;那么MATLAB将用新内容替换原始内容&#xff0c;并在必要时分配新的存储空间。 例如&#xff0c; Tota…

【Linux】深入理解Linux文件系统与日志分析

目录 一、inode与block 1.block与inode概述 2.inode的内容 3.inode号码 4.inode的大小 5.访问文件的简单流程 6.inode的特殊作用 7.通过indoe号删除rm常规方法删除不掉的文件 二、硬链接和软链接 三、恢复误删除的文件 1.恢复EXT类型的文件 示例 2.xfs类型文件备份…

通信场景:动态调整对象池大小

通信场景&#xff1a;动态调整对象池大小 文章目录 通信场景&#xff1a;动态调整对象池大小前言历史通信量队列长度系统资源响应时间结语 前言 在做通信相关的开发时&#xff0c;使用对象池管理用于存放接收数据的内存块&#xff0c;是一种常见的优化技术。特别是在需要频繁分…

jvm中的引用类型

Java中的引用类型 1.强引用 一个对象A被局部变量、静态变量引用了就产生了强引用。因为局部变量、静态变量都是被GC Root对象关联上的&#xff0c;所以被引用的对象A&#xff0c;就在GC Root的引用链上了。只要这一层关系存在&#xff0c;对象A就不会被垃圾回收器回收。所以只要…

洛基计划project loki加速器推荐 免费低延迟联机加速器分享

洛基计划project loki加速器推荐 免费低延迟联机加速器分享 《洛基计划》是一款团队PVP游戏&#xff0c;融合有动作、英雄设计、大逃杀等元素&#xff0c;由前拳头游戏、Bungie和暴雪娱乐员工创立的新工作室Theorycraft Games共同发布。《洛基计划》汇集了一些大型团队PVP游戏…

原生js实现一个简化版的h函数

原生js实现一个简化版的h函数 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title&…

轻量和ECS对比:阿里云轻量应用服务器和云服务器有啥区别?

阿里云轻量应用服务器和云服务器ECS区别对照表&#xff0c;一看就懂的适用人群、使用场景、优缺点、使用限制、计费方式、网路和镜像系统全方位对比&#xff0c;阿里云服务器网aliyunfuwuqi.com整理ECS和轻量应用服务器区别对照表&#xff0c;可以在阿里云CLUB中心领取 aliyun.…

HTML5+CSS3小实例:炫彩荧光线条登录框

实例:炫彩荧光线条登录框 技术栈:HTML+CSS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-sca…

OpenTelemetry-2.Go接入Jaeger(grpc,gin-http)

目录 1.什么是OpenTelemetry 2.搭建jaeger 3.链路追踪 本地调用 远程调用 GRPC proto server端 client端 Gin-HTTP 调用流程 api1 api2 grpc 4.完整代码 1.什么是OpenTelemetry 参考&#xff1a;OpenTelemetry-1.介绍-CSDN博客 2.搭建jaeger 参考&#xff1a;…

第100+6步 ChatGPT文献复现:ARIMAX预测新冠

基于WIN10的64位系统演示 一、写在前面 我们继续来解读ARIMAX模型文章&#xff0c;这一轮带来的是&#xff1a; 《PLoS One》杂志的2022年一篇题目为《A data-driven eXtreme gradient boosting machine learning model to predict COVID-19 transmission with meteorologic…

Android视角看鸿蒙第十二课-鸿蒙的布局之相对布局RelativeContainer

Android视角看鸿蒙第十二课-鸿蒙的布局之相对布局RelativeContainer 导读 相对布局和线性、层叠布局一样都是类似于Android布局的&#xff0c;之前两篇文章已经了解线性、层叠布局的使用方法&#xff0c;这篇文章一起来学习下鸿蒙中的相对布局。 之前的文章中&#xff0c;我偶…

【驱动】AM437x中出现很多bioset进程,杀不掉,有影响吗?

1、问题描述 查看linux系统进程时,发现很多bioset进程 2、问题分析 1)bioset进程是内核线程 这些bioset进程与Linux内核的块I/O(Block Input/Output)层有关,它们是内核线程,不是用户空间的进程。 Linux的块I/O层负责管理磁盘和其他块设备的数据传输。当系统读写磁盘…

【python程序打包教程】PyInstaller一键打包Python程序为独立可执行exe文件

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

AI大模型探索之路-认知篇4:大语言模型预训练基础认知

文章目录 前言一、预训练流程分析二、预训练两大挑战三、预训练网络通信四、预训练数据并行五、预训练模型并行六、预训练3D并行七、预训练代码示例总结 前言 在人工智能的宏伟蓝图中&#xff0c;大语言模型&#xff08;LLM&#xff09;的预训练是构筑智慧之塔的基石。预训练过…