26版SPSS操作教程(高级教程第十三章)

前言

#今日世界读书日,宝子你,读书了嘛~

#本期内容:主成分分析、因子分析、多维偏好分析

#由于导师最近布置了学习SPSS这款软件的任务,因此想来平台和大家一起交流下学习经验,这期推送内容接上一次高级教程第十二章的学习笔记,希望能得到一些指正和帮助~

粉丝及官方意见说明

#针对官方爸爸的意见说的推送缺乏操作过程的数据案例文件澄清如下:1、操作演示的数据全部由我本人随意假设输进去的,重在演示操作;2、本人也只是在学习阶段,希望友友们能谅解哈,手里有数据的宝子当然更好啦,没有咱就自己假设数据练习一下也没多大关系的哈;3、我也会在后续教程中尽量增加一些数据的必要性说明;4、大家有什么好的意见也可以在评论区一起交流吖~

第十三章一些学习笔记

  1. SPSS中的主成分分析是考察多个变量相关性的一种多元统计方法,其应用目的主要为信息浓缩,常常被作为许多大型研究的中间步骤,在对信息进行浓缩后继续采用其他多元统计分析方法解决实际问题。--统计分析高级教程(第三版)P239
  2. 主成分分析中的一些概念:1、信息:表示变异的大小;2、特征值:代表引入主成分后可以解释平均多少个原始变量的信息,一般选特征值大于1的主成分纳入分析;3、主成分Zi的方差贡献率:表明主成分Zi的方差在总样本方差中的比重,这个值越大,表明主成分携带的原始信息量越多;4、累计贡献率:表明前k个主成分累计提取了多少原始信息,一般该指标达到85%即可。主成分分析主要有两个用途:1、主成分评价;2、主成分回归【由于主成分估计不是无偏估计,其核心目的是得到符合专业知识的回归系数估计,而不是预测效果最好的回归方程】。--统计分析高级教程(第三版)P240-241
  3. SPSS中的因子分析不仅考虑进行信息浓缩,还希望能够进一步阐明这些指标间的内在关联结构,发现这些实测指标所代表的潜在因子。--统计分析高级教程(第三版)P245
  4. 因子分析中的概念:1、因子荷载:表示变量依赖于某因子的程度;2、变量共同度(communalities):也称公因子方差比,表示全部公因子对变量总方差所做出的贡献,数值在0-1之间,值越大说明该变量能被公因子解释的信息比例越高,若各因子完全正交,则公因子方差比和因子荷载是可换算的。因子分析的适用条件:1、样本量不能太小【样本量应当是变量数的10倍以上,理想的话最好是25倍以上,总样本量理论要求在100例以上,样本量不满足要求时,模型可能不稳定,采取结果解释时需要谨慎】;2、各变量间应当具有相关性【若变量相互独立,则无法提取公因子,即无法进行因子分析了】;3、因子分析中各公因子应当具有实际意义。--统计分析高级教程(第三版)P245-246
  5. 因子分析可以分为探索性因子分析和验证性因子分析:1、探索性因子分析(exploratory factor analysis)主要目的在于得到因子的个数,并进一步寻求各个因子的含义;2、验证性因子分析(confirmatory factor analysis)一般需要通过结构方程模型加以拟合。其主要用途主要有:1、在研究设计/问卷效果评估阶段,可以用因子分析来评价问卷的结构效度;2、在统计分析阶段,因子分析可以用来寻找变量间潜在结构,或者对提出的内在结构进行检验证实。--统计分析高级教程(第三版)P246
  6. SPSS公因子提取方法:1、主成分法(principal components);2、不加权最小平方法(unweight least square);3、广义最小二乘法(generalized least square);4、最大似然法(maximum likelihood);5、主轴因子法(principal axis factoring);6、Alpha因子分析法(alpha factoring);7、映像因子法(image factoring)。--统计分析高级教程(第三版)P254
  7. 主成分分析和因子分析的比较:1、两种方法的异同【主成分分析是对原始数据的协方差矩阵或相关矩阵进行的矩阵变换而来的,不要求数据矩阵有特点的结构形式,而因子分析假定矩阵有特定的模型,并满足特定的条件,否则因子分析的结果可能就是假的,当特殊因子方差贡献率为零时,主成分分析和因子分析完全等价】;2、数学关联【对主成分分析而言,特征向量就是其主成分系数矩阵】。SPSS中利用因子分析来实现主成分分析的注意事项:1、在因子分析中的“提取”子对话框中需要指定公因子数目为原始变量数,使得初始因子载荷中不包含特殊因子一铺神龙;2、计算主成分系数矩阵,即将各主成分上的荷载分别除以相应的主成分特征值的平方根。--统计分析高级教程(第三版)P255-256

 第十三章一些操作方法  

主成分分析、因子分析与多维偏好分析

主成分分析的过程

确定指标综合时的权重

结果解释

即主成分1的表达式为

可以看出第一主成分主要表述年收入、文化程度方面的指标。

结果优化

因子分析

结果分析

这里提取的因子表达式可以写为:

因子旋转

为了使因子荷载矩阵中的系数更加显著,常对初始因子荷载矩阵进行旋转,使相关系数的绝对值向(0,1)区间两极分化,从而更加容易解释。

结果解释

因子表达式

保存公因子得分进行综合评价
保存变量

处理变量

分类数据的主成分分析(多维偏好分析,multiple preference analysis,MPA)

界面说明

多维偏好分析研究

结果分析

多维偏好图

结束语 

#好啦~,以上就是我SPSS第三十一期学习笔记——高级教程第十三章的学习情况啦~,希望能与大家交流学习经验,共同进步吖~

#考虑高级教程的难度与深度,主要是内容太多辣,后续依然会尽力更新内容~争取日更!

#也非常感谢大家对我的一路陪伴,宝子们的关注、支持和打赏就是up儿不断更新滴动力,我近期也会坚持学习SPSS,更新相应的学习内容及笔记到平台上,咱们下期高级教程不见不散~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2980622.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Unity 如何制作和发布你的 Package

一、制作你的第一个 Package Unity Package 不做过多赘述,像 URP 本质上也是一个 Package,在 Unity 中可以通过菜单栏 → Window → Package manager 来管理你当前的所有 Package 本篇文章主要介绍:如何制作并发布属于你的 Package 1.1 Pac…

【笔记django】创建一个app

创建app 错误 raise ImproperlyConfigured( django.core.exceptions.ImproperlyConfigured: Cannot import rules. Check that dvadmin.rules.apps.RulesConfig.name is correct.原因 刚创建的rules的app被手动移动到了dvadmin目录下 而dvadmin/rules/apps.py的内容还是&…

wandb注册 wandb: ERROR api_key

wandb: ERROR api_key not configured (no-tty). call wandb.login(key[your_api_key]) Traceback (most recent call last): 背景 使用yolov8训练时 在pycharm中出现wandb账号未注册错误 Transferred 355/355 items from pretrained weights TensorBoard: Start with tensor…

《ElementPlus 与 ElementUI 差异集合》el-select 显示下拉列表在 Cesium 场景中无法监听关闭

前言 仅在 Element UI 时有此问题,Element Plus 由于内部结构差异较大,不存在此问题。详见《el-select 差异点,如:高、宽、body插入等》; 问题 点击空白处,下拉列表可监听并关闭;但在 Cesium…

SpringCloud Alibaba--nacos简介和配置管理和登录

目录 一.理论基础 二.nacos 2.1 简介 2.2 安装 三.父项目 三.生产者 3.1 配置依赖 3.2 配置文件 3.3 启动类 3.4 控制类 四.消费者 4.1 配置依赖 4.2 配置文件 4.3 启动类 4.4 feign的接口 五.效果 六.负载均衡--权重算法 6.1重启nacos 6.2 设置权重 6.3 设…

【嵌入式】Arduino IDE + ESP32开发环境配置

一 背景说明 最近想捣鼓一下ESP32的集成芯片,比较了一下,选择Arduino IDE并添加ESP32支持库的方式来开发,下面记录一下安装过程以及安装过程中遇到的坑。 二 下载准备 【1】Arduino IDE ESP32支持一键安装包(非常推荐&#xff0…

SpringCloud注册nacos错误:Could not resolvplaceholder ‘xxxxx‘ in value “xxxx“

这个错误是我在做spirngcloud注册服务到nacos时发现的,算是折磨我折磨了好久,最后发现了还是先记录一下,首先还是说一下我的项目版本信息,因为不同的版本就有这不同的解决方案,这也是最恶心的一点,以至于我…

万界星空科技电机行业MES+商业电机行业开源MES+项目合作

要得出mes系统解决方案在机电行业的应用范围,我们先来看一下传统机电行业的管理难题: 1、 产品标准化程度较低,制造工艺复杂,生产周期较长,产品质量不稳定; 2、 自动化程度低,大多数工序以手工…

探索设计模式的魅力:主从模式与AI大模型的结合-开启机器学习新纪元

​🌈 个人主页:danci_ 🔥 系列专栏:《设计模式》 💪🏻 制定明确可量化的目标,坚持默默的做事。 ✨欢迎加入探索主从模式与AI大模型之旅✨ 🌟Hey, tech enthusiasts! 你是否还在追…

分类预测 | Matlab实现RIME-BP霜冰优化BP神经网络多特征分类预测

分类预测 | Matlab实现RIME-BP霜冰优化BP神经网络多特征分类预测 目录 分类预测 | Matlab实现RIME-BP霜冰优化BP神经网络多特征分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.RIME-BP霜冰优化BP神经网络多特征分类预测(Matlab实现完整源码和数据&a…

Vue3+Echarts: 浏览器缩小后,图表内容发生重叠

一、问题 Vue3Echarts项目:浏览器缩小后,图表内容发生重叠。本文将提供几个解决上述问题的思路,后续有新的解决思路将在此处进行补充。 二、解决思路 1、动态调整ECharts配置 如果图表容器的尺寸没有随着浏览器窗口的缩小而进行相应地调整…

笔记本电脑耗电和发热比较厉害怎么处理

工作中会遇到有同事反馈笔记本电脑耗电和发热比较厉害,主要检查以下几个地方 1、CPU频率 很多人觉得是cpu使用率高就代表电脑跑得快,发热量就大,其实不是的,主要是看的cpu频率,频率越高,电脑发热量越大。如…

单片机学习过程

继电器光耦隔离电压转换步进电机直流电机 arduino是最好用的一种,他提供了完整的设备库文件,任何外部设备只要查找相应的库,就可以很方便的使用 , 但是如果不去学习51 或stm32 或 嵌入式玩玩还可以,如果碰到没有实现的…

Security用户管理(一)

Security初探(三)-CSDN博客 Security的身份验证流程: AuthenticationFilter拦截请求并将身份验证职能委托给AuthticationManager.为了实现身份验证逻辑,AuthticationManager会使用身份验证程序.为了检查用户名和密码,AuthenticationProvider会使用UserDetailsService和Passwor…

分类预测 | Matlab实现CNN-GRU-SAM-Attention卷积门控循环单元融合空间注意力机制的数据分类预测

分类预测 | Matlab实现CNN-GRU-SAM-Attention卷积门控循环单元融合空间注意力机制的数据分类预测 目录 分类预测 | Matlab实现CNN-GRU-SAM-Attention卷积门控循环单元融合空间注意力机制的数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现CNN-GRU…

生成式AI原理技术详解(一)——神经网络与深度学习

本文主要介绍了生成式AI的最新发展,提到了GPT-5和AI软件工程师在行业中的影响,指出AI技术进步对国家竞争和个人职业发展的潜在影响。 未来已来 最近有两则新闻: sam altman自曝GPT-5细节,公开宣称GPT-5提升将非常大,任…

第48期|GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找…

FPGA“题目周周练”活动来啦!

Hi,各位编程精英er~ 不知道大家的FPGA学习之旅到达哪一个阶段了呢?又在这个过程中遇到了哪些困惑? 作为一门高度专业化且充满挑战的技术,FPGA的学习是一场不断思考、认知、持续深化的过程。在这个过程中,思维的敏捷和…

IDEA上配置Maven环境

1.选择IDEA中的Setting 2.搜索maven 3.设置IDEA使用本地安装的Maven,并修改配置文件路径 配置文件,本地仓库,阿里云仓库配置及路径教程 在IDEA上配置完成。

“三三裂变”,实体书营销实操细节分享……

“三三裂变”实操细节 一、实验结果 “三三裂变”的实验,结果比较好。就是我们大概有300人报名,但实际行动的只有109人,大概有103人都完成了三个人的目标,也就是说我们通过109人裂变了475人,利润率是1:4.5左右,整个裂变的效率还是可以的,也就是说: 如果你用这种方法有…