深入探究图像增强(C语言实现)

我们将从基础出发使用C语言进行图像处理与分析,重点讨论图像增强和平滑技术。图像增强技术旨在通过增加对比度、亮度和整体清晰度来改善图像的视觉质量。另一方面,图像平滑方法则用于减少噪声并减少图像中的突变,使图像更加均匀和视觉上吸引人。

使用C语言作为实现方式是因为只有当你手敲一遍这些代码,你才会对这些方法有更加深刻的理解


我们在前两次的笔记中已经实现了图像处理的基本操作

分别是

  • 图像每一个像素灰度值的读入
  • 图像灰度值直方图的显示

今天的目标实际上也很小,我们的目标就是实现图像增强

书上一共讲了两种办法,分别是

  1. 灰度线性拉伸算法
  2. 直方图均衡化

我们一个一个来尝试

灰度线性拉伸算法

我们先来看代码

void LinearStretchDemo(BYTE* pGryImg, int width, int height, double k, double b)
{BYTE* pCur, * pEnd;for(pCur = pGryImg,pEnd = pGryImg + width + height;pCur < pEnd;)//这个地方书上是这么写的,我在下面还是写成了标准写法{*(pCur++) = LUT[ * pCur];}return;
}

总体上来看还是比较简单,我们来试着写成C语言版本

void LinearStretchDemo(uint8_t* pGryImg, int width, int height, double k, double b) 
{uint8_t* pCur, * pEnd;for (pCur = pGryImg, pEnd = pGryImg + width * height; pCur < pEnd; pCur++) {*pCur = LUT[*pCur];}
}

这个代码前面讲过好多了,这里就不再多讲了,有兴趣可以去看看C语言图像的读入那一篇笔记

但是这里面LUT是什么意思呢?

LUT 是 Look-Up Table 的缩写,中文意思是查找表或者映射表。在图像处理中,LUT 是一种非常常见的技机,用于对图像进行颜色或灰度值的映射和调整。

具体来说,LUT 是一个数组或者表格,其中存储了输入值到输出值的对应关系。在图像处理中,通常用 LUT 来实现颜色校正、对比度调整、灰度拉伸等操作。例如,在灰度拉伸中,LUT 存储了原始灰度值到拉伸后的灰度值之间的映射关系。

使用 LUT 的好处在于,它可以提高图像处理的效率,并且允许我们通过简单的表格查询来实现复杂的颜色或灰度值调整。同时,LUT 也可以在不同的图像处理算法中重复使用,提高了算法的复用性和可维护性。

总而言之,LUT 是图像处理中非常有用的工具,它通过预先计算和存储输入值到输出值的映射关系,帮助我们快速、高效地对图像进行颜色和灰度值的调整。

这里如果每个灰度值都有一个映射值,那么就不用进行重复大量的计算了,只需要计算255次即可

这么说不是很好理解,我们直接来看书上下一个算法

这里我直接写成C语言版本

void LinearStretchDemo(uint8_t* pGryImg, int width, int height, double k, double b)
{uint8_t* pCur, * pEnd;int LUT[256];    //因为只有[0,255]共256个灰度值//step1. 生成查找表for (int g = 0; g < 256; g++){LUT[g] = max(0, min(255, k * g + b));}//step2. 进行变换for (pCur = pGryImg, pEnd = pGryImg + width * height; pCur < pEnd; pCur++){*pCur = LUT[*pCur];}//step3. 结束return;
}

这段代码是一个实现灰度图像线性拉伸处理的函数 LinearStretchDemo。让我来逐步解释这段代码的具体实现:

  1. uint8_t* pCur, * pEnd;:定义了两个指针变量,pCur 用于指向当前处理的像素值,pEnd 指向图像数据的末尾。
  2. int LUT[256];:定义了一个大小为 256 的整型数组,用于存储灰度值的映射关系。
  3. 生成查找表部分:
    • for (int g = 0; g < 256; g++):遍历所有可能的灰度值(0 到 255)。
    • LUT[g] = max(0, min(255, k * g + b));:对于每个灰度值,根据线性拉伸的公式 k * g + b 计算新的灰度值,并确保其范围在 0 到 255 之间,以防止越界。
  4. 进行变换部分:
    • for (pCur = pGryImg, pEnd = pGryImg + width * height; pCur < pEnd; pCur++):遍历图像数据中的每个像素。
    • *pCur = LUT[*pCur];:使用查找表 LUT 将当前像素的灰度值映射为线性拉伸后的新灰度值。
  5. 返回处理结果并结束函数。
我们来试一下

首先来讲一下传参

image-20240419193010726

  1. pGryImg:这是一个指向灰度图像数据的指针。灰度图像是一个二维数组,存储了图像中每个像素的灰度值。通过这个指针,函数能够访问图像的像素数据。
  2. width:这是图像的宽度,表示图像中每行像素的数量。它告诉函数每行有多少像素数据。
  3. height:这是图像的高度,表示图像中有多少行像素。它告诉函数图像有多少行数据。
  4. k:这是一个 double 类型的参数,代表线性拉伸的斜率。它控制着拉伸的速率或程度。当 ( k ) 大于 1 时,图像的对比度增加;当 ( k ) 小于 1 时,对比度降低。
  5. b:这也是一个 double 类型的参数,代表线性拉伸的偏移。它控制着拉伸后灰度值的起始位置。当 ( b ) 大于 0 时,图像的整体亮度增加;当 ( b ) 小于 0 时,整体亮度减小。

看效果

image-20240419194326354

简单的处理以后效果其实还是不错的

我们用这两个函数看一下数值

这两个函数的讲解在这篇文章

图像处理与图像分析—图像统计特性的计算(纯C语言实现灰度值显示)-CSDN博客

//统计图像灰度值
//pImg:灰度图像数据的指针。
//width:图像的宽度。
//height:图像的高度。
//* histogram:数组首元素地址,需要一个能储存256个变量的整型数组
void GetHistogram(uint8_t* pImg, int width, int height, int* histogram)
{uint8_t* pCur;uint8_t* pEnd = pImg + width * height;// 初始化直方图数组memset(histogram, 0, sizeof(int) * 256);// 直方图统计for (pCur = pImg; pCur < pEnd;){histogram[*pCur]++;pCur++;}// 函数结束return;
}//亮度和对比度
//储存histogram灰度直方图的指针
//接收亮度的变量地址
//接收对比度的变量地址
void GetBrightContrast(int* histogram, double* bright, double* contrast)
{int g;double sum, num; //书上说图像很亮时,int有可能会溢出,所以我这里直接用doubledouble fsum;//step.1 求亮度for (sum = num = 0, g = 0; g < 256; g++){sum += histogram[g] * g;num += histogram[g];}*bright = sum * 1.0 / num;//step.2 求对比度for (fsum = 0.0, g = 0; g < 256; g++){fsum += histogram[g] * (g - *bright) * (g - *bright);}*contrast = sqrt(fsum / (num - 1)); //即Std Dev//step.3 结束return;
}

image-20240419202007702

直方图的均衡化与规定化

image-20240419202356451

其实很好理解,就是把集中在某一区域的灰度值均匀的平铺在整体区域

我们还是先来看书上的代码

void RmwHistogramEqualizeDemo(BYTE *pGryImg, int width, int height)
{// 定义变量BYTE *pCur, *pEnd = pGryImg + width * height; // 指针变量,指向当前像素和图像末尾int histogram[256], A[256], LUT[256], g; // 直方图数组、累积直方图数组、查找表和灰度级// step.1-------------求直方图--------------------------//memset(histogram, 0, sizeof(int) * 256); // 初始化直方图数组为0for (pCur = pGryImg; pCur < pEnd;)histogram[*(pCur++)]++; // 统计每个灰度级出现的频率// step.2-------------求A[g],N-------------------------//for (g = 1, A[0] = histogram[0]; g < 256; g++){A[g] = A[g - 1] + histogram[g]; // 计算累积直方图数组}// step.3-------------求LUT[g]-------------------------//for (g = 0; g < 256; g++)LUT[g] = 255 * A[g] / (width * height); // 计算直方图均衡化后的灰度级// step.4-------------查表------------------------------//for (pCur = pGryImg; pCur < pEnd;)*(pCur++) = LUT[*pCur]; // 使用查找表对每个像素进行映射// step.5-------------结束------------------------------//return;
}

是不是还能继续优化

void RmwHistogramEqualize(BYTE *pGryImg, int width, int height)
{BYTE *pCur, *pEnd = pGryImg + width * height; // 指针变量,指向当前像素和图像末尾int histogram[256], LUT[256], A, g; // 直方图数组、查找表数组、累积直方图、灰度级// step.1-------------求直方图--------------------------//memset(histogram, 0, sizeof(int) * 256); // 初始化直方图数组为0for (pCur = pGryImg; pCur < pEnd;) histogram[*(pCur++)]++; // 统计每个灰度级出现的频率// step.2-------------求LUT[g]-------------------------//A = histogram[0]; // 初始化累积直方图的值为第一个灰度级的频率LUT[0] = 255 * A / (width * height); // 计算第一个灰度级对应的均衡化后的灰度值for (g = 1; g < 256; g++){A += histogram[g]; // 更新累积直方图的值LUT[g] = 255 * A / (width * height); // 计算当前灰度级对应的均衡化后的灰度值}// step.3-------------查表------------------------------//for (pCur = pGryImg; pCur < pEnd;) *(pCur++) = LUT[*pCur]; // 使用查找表对每个像素进行灰度映射// step.4-------------结束------------------------------//return;
}

接下来改为C语言版

void RmwHistogramEqualize(uint8_t *pGryImg, int width, int height) 
{uint8_t *pCur, *pEnd = pGryImg + width * height; // 指针变量,指向当前像素和图像末尾int histogram[256], LUT[256], A, g; // 直方图数组、查找表数组、累积直方图、灰度级// step.1-------------求直方图--------------------------//memset(histogram, 0, sizeof(int) * 256); // 初始化直方图数组为0for (pCur = pGryImg; pCur < pEnd;)  histogram[*(pCur++)]++; // 统计每个灰度级出现的频率// step.2-------------求LUT[g]-------------------------//A = histogram[0]; // 初始化累积直方图的值为第一个灰度级的频率LUT[0] = 255 * A / (width * height); // 计算第一个灰度级对应的均衡化后的灰度值for (g = 1; g < 256; g++)  {A += histogram[g]; // 更新累积直方图的值LUT[g] = 255 * A / (width * height); // 计算当前灰度级对应的均衡化后的灰度值}// step.3-------------查表------------------------------//for (pCur = pGryImg; pCur < pEnd;)  *(pCur++) = LUT[*pCur]; // 使用查找表对每个像素进行灰度映射// step.4-------------结束------------------------------//return;
}

我们来看看实现效果怎么样

image-20240419215512601

image-20240419222847826

可以看到效果还是很不错的

对数变换

人眼对于亮度变化的反应是随着光的增加而减弱,实验证明人眼的这种性质更近似于对数函数

对数变换是一种常见的图像处理技术,通常用于增强图像的对比度或调整图像的亮度。它的原理是通过对图像的像素值取对数来调整像素值的分布,从而改变图像的外观。

在对数变换中,常用的是自然对数函数(以e为底的对数函数),其公式为:

image-20240419221718879

其中:

  • ( s ) 是输出图像的像素值;
  • ( r ) 是输入图像的像素值;
  • ( c ) 是一个常数,用于调节对比度;
  • ( \log ) 是自然对数函数。

对数变换的特点包括:

  1. 对数压缩特性:对于输入像素值较小的区域,对数变换会对其进行较大程度的拉伸,从而增强了图像的对比度。这对于那些像素值分布在较低灰度级区域的图像非常有用,可以使得细节更加清晰可见。
  2. 对数拉伸特性:对于输入像素值较大的区域,对数变换会对其进行较小程度的拉伸,这有助于将高灰度级的区域拉伸到更广泛的灰度范围内,从而增强了图像的亮度表现。

对数变换的应用包括但不限于:

  • 图像增强:通过调整对数变换中的参数,可以增强图像的对比度,使得图像细节更加清晰。
  • 图像压缩:对数变换也可以用于压缩图像的动态范围,将大范围的灰度级映射到一个较小的范围内,从而方便存储和传输。

看代码

void RmwLogTransform(BYTE *pGryImg, int width, int height)
{BYTE *pCur, *pEnd = pGryImg + width * height; // 指向灰度图像数据的当前指针和结束指针int histogram[256], LUT[256], gmax, g; // 声明直方图数组、查找表数组、最大灰度值、当前灰度值double c; // 声明常数c// step.1-------------求直方图--------------------------//memset(histogram, 0, sizeof(int) * 256); // 初始化直方图数组为0for (pCur = pGryImg; pCur < pEnd;) histogram[*(pCur++)]++; // 遍历图像数据,统计每个灰度级的像素数量// step.2-------------最大值---------------------------//for (gmax = 255; gmax >= 0; gmax++) if (histogram[gmax]) break; // 从最大灰度级开始向低灰度级搜索,找到第一个非零灰度级,即最大灰度值// step.3-------------求LUT[g]-------------------------//c = 255.0 / log(1 + gmax); // 计算常数cfor (g = 0; g < 256; g++) {LUT[g] = (int)(c * log(1 + g)); // 根据对数变换公式计算查找表中每个灰度级的映射值}// step.4-------------查表------------------------------//for (pCur = pGryImg; pCur < pEnd;) *(pCur++) = LUT[*pCur]; // 使用查找表将图像数据进行对数变换// step.5-------------结束------------------------------//return; // 函数结束
}

改为C语言实现

void RmwLogTransform(uint8_t *pGryImg, int width, int height)
{uint8_t *pCur, *pEnd = pGryImg + width * height; // 指向灰度图像数据的当前指针和结束指针int histogram[256], LUT[256], gmax, g; // 声明直方图数组、查找表数组、最大灰度值、当前灰度值double c; // 声明常数c// step.1-------------求直方图--------------------------//memset(histogram, 0, sizeof(int) * 256); // 初始化直方图数组为0for (pCur = pGryImg; pCur < pEnd;) histogram[*(pCur++)]++; // 遍历图像数据,统计每个灰度级的像素数量// step.2-------------最大值---------------------------//for (gmax = 255; gmax >= 0; gmax++) if (histogram[gmax]) break; // 从最大灰度级开始向低灰度级搜索,找到第一个非零灰度级,即最大灰度值// step.3-------------求LUT[g]-------------------------//c = 255.0 / log(1 + gmax); // 计算常数cfor (g = 0; g < 256; g++) {LUT[g] = (int)(c * log(1 + g)); // 根据对数变换公式计算查找表中每个灰度级的映射值}// step.4-------------查表------------------------------//for (pCur = pGryImg; pCur < pEnd;) *(pCur++) = LUT[*pCur]; // 使用查找表将图像数据进行对数变换// step.5-------------结束------------------------------//return; // 函数结束
}

image-20240419222755214

增强方法更应该根据我们的需求来选择


源码

IDP.h

#pragma once#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>uint8_t* readGrayScaleBMP(const char* filename, int* width, int* height);//读取8位灰度图片
void saveGrayScaleBMP(const char* filename, const uint8_t* imageData, int width, int height);// 将8位灰度图像数据保存为BMP文件
uint8_t* readColorBMP(const char* filename, int* width, int* height);//读取24位彩色图像的BMP文件
void saveColorBMP(const char* filename, const uint8_t* imageData, int width, int height);//将24位彩色图像数据保存为BMP文件
void LinearStretchDemo(uint8_t* pGryImg, int width, int height, double k, double b);//灰度线性拉伸
void GetHistogram(uint8_t* pImg, int width, int height, int* histogram);//统计图像灰度值
void GetBrightContrast(int* histogram, double* bright, double* contrast);//亮度和对比度
void RmwHistogramEqualize(uint8_t* pGryImg, int width, int height);//直方图均衡化
void RmwLogTransform(uint8_t* pGryImg, int width, int height);//对数变换

IDP.C

#include "IDP.h"//读取8位灰度图片
//filename:字符数组的指针,用于指定要保存的图像文件的名称或路径。
//imageData:无符号 8 位整型数据的指针,代表要保存的图像数据。
//width:图像的宽度。
//height:图像的高度。
uint8_t* readGrayScaleBMP(const char* filename, int* width, int* height) 
{FILE* file = fopen(filename, "rb");if (!file) {fprintf(stderr, "Error opening file %s\n", filename);return NULL;}// 读取BMP文件头部信息uint8_t bmpHeader[54];fread(bmpHeader, 1, 54, file);// 从文件头部提取图像宽度和高度信息*width = *(int*)&bmpHeader[18];*height = *(int*)&bmpHeader[22];// 分配存储图像数据的内存uint8_t* imageData = (uint8_t*)malloc(*width * *height);if (!imageData) {fprintf(stderr, "内存分配失败\n");fclose(file);return NULL;}// 计算调色板的大小int paletteSize = *(int*)&bmpHeader[46];if (paletteSize == 0)paletteSize = 256;// 读取调色板数据uint8_t palette[1024];fread(palette, 1, paletteSize * 4, file);// 读取图像数据fseek(file, *(int*)&bmpHeader[10], SEEK_SET);fread(imageData, 1, *width * *height, file);fclose(file);return imageData;
}// 将8位灰度图像数据保存为BMP文件
//filename:字符数组的指针,用于指定要保存的图像文件的名称或路径。
//imageData:无符号 8 位整型数据的指针,代表要保存的图像数据。
//width:图像的宽度。
//height:图像的高度。
void saveGrayScaleBMP(const char* filename, const uint8_t* imageData, int width, int height) 
{FILE* file = fopen(filename, "wb");if (!file) {fprintf(stderr, "Error creating file %s\n", filename);return;}// BMP文件头部信息uint8_t bmpHeader[54] = {0x42, 0x4D,             // 文件类型标识 "BM"0x36, 0x00, 0x0C, 0x00, // 文件大小(以字节为单位,此处假设图像数据大小不超过4GB)0x00, 0x00,             // 保留字段0x00, 0x00,             // 保留字段0x36, 0x00, 0x00, 0x00, // 位图数据偏移(以字节为单位)0x28, 0x00, 0x00, 0x00, // 位图信息头大小(40字节)0x00, 0x00, 0x00, 0x00, // 图像宽度0x00, 0x00, 0x00, 0x00, // 图像高度0x01, 0x00,             // 目标设备的级别(此处为1,不压缩)0x08, 0x00,             // 每个像素的位数(8位)0x00, 0x00, 0x00, 0x00, // 压缩类型(此处为不压缩)0x00, 0x00, 0x00, 0x00, // 图像数据大小(以字节为单位,此处为0,表示不压缩)0x00, 0x00, 0x00, 0x00, // 水平分辨率(像素/米,此处为0,表示未知)0x00, 0x00, 0x00, 0x00, // 垂直分辨率(像素/米,此处为0,表示未知)0x00, 0x00, 0x00, 0x00, // 使用的颜色索引数(0表示使用所有调色板项)0x00, 0x00, 0x00, 0x00  // 重要的颜色索引数(0表示所有颜色都重要)};// 更新BMP文件头部信息中的宽度和高度*(int*)&bmpHeader[18] = width;*(int*)&bmpHeader[22] = height;// 写入BMP文件头部信息fwrite(bmpHeader, 1, 54, file);// 写入调色板数据for (int i = 0; i < 256; i++) {fputc(i, file);  // 蓝色分量fputc(i, file);  // 绿色分量fputc(i, file);  // 红色分量fputc(0, file);  // 保留字节}// 写入图像数据fwrite(imageData, 1, width * height, file);fclose(file);
}// 读取24位彩色图像的BMP文件
//filename:字符数组的指针,用于指定要读取的 BMP 格式图像文件的名称或路径。
//width:整型变量的指针,用于存储读取的图像的宽度。
//height:整型变量的指针,用于存储读取的图像的高度。
uint8_t* readColorBMP(const char* filename, int* width, int* height) 
{FILE* file = fopen(filename, "rb");if (!file) {fprintf(stderr, "Error opening file %s\n", filename);return NULL;}// 读取BMP文件头部信息uint8_t bmpHeader[54];fread(bmpHeader, 1, 54, file);// 从文件头部提取图像宽度和高度信息*width = *(int*)&bmpHeader[18];*height = *(int*)&bmpHeader[22];// 分配存储图像数据的内存uint8_t* imageData = (uint8_t*)malloc(*width * *height * 3);if (!imageData) {fprintf(stderr, "Memory allocation failed\n");fclose(file);return NULL;}// 读取图像数据fseek(file, *(int*)&bmpHeader[10], SEEK_SET);fread(imageData, 1, *width * *height * 3, file);fclose(file);return imageData;
}//将24位彩色图像数据保存为BMP文件
//filename:字符数组的指针,用于指定要保存的图像文件的名称或路径。
//imageData:无符号 8 位整型数据的指针,代表要保存的图像数据。
//width:图像的宽度。
//height:图像的高度。
void saveColorBMP(const char* filename, const uint8_t* imageData, int width, int height) 
{FILE* file = fopen(filename, "wb");if (!file) {fprintf(stderr, "Error creating file %s\n", filename);return;}// BMP文件头部信息uint8_t bmpHeader[54] = {0x42, 0x4D,             // 文件类型标识 "BM"0x00, 0x00, 0x00, 0x00, // 文件大小(占位,稍后计算)0x00, 0x00,             // 保留字段0x00, 0x00,             // 保留字段0x36, 0x00, 0x00, 0x00, // 位图数据偏移(以字节为单位)0x28, 0x00, 0x00, 0x00, // 位图信息头大小(40字节)0x00, 0x00, 0x00, 0x00, // 图像宽度0x00, 0x00, 0x00, 0x00, // 图像高度0x01, 0x00,             // 目标设备的级别(此处为1,不压缩)0x18, 0x00,             // 每个像素的位数(24位)0x00, 0x00, 0x00, 0x00, // 压缩类型(此处为不压缩)0x00, 0x00, 0x00, 0x00, // 图像数据大小(占位,稍后计算)0x00, 0x00, 0x00, 0x00, // 水平分辨率(像素/米,此处为0,表示未知)0x00, 0x00, 0x00, 0x00, // 垂直分辨率(像素/米,此处为0,表示未知)0x00, 0x00, 0x00, 0x00, // 使用的颜色索引数(0表示使用所有调色板项)0x00, 0x00, 0x00, 0x00  // 重要的颜色索引数(0表示所有颜色都重要)};// 更新BMP文件头部信息中的宽度和高度*(int*)&bmpHeader[18] = width;*(int*)&bmpHeader[22] = height;// 计算图像数据大小uint32_t imageDataSize = width * height * 3 + 54; // 加上文件头部大小bmpHeader[2] = (uint8_t)(imageDataSize & 0xFF);bmpHeader[3] = (uint8_t)((imageDataSize >> 8) & 0xFF);bmpHeader[4] = (uint8_t)((imageDataSize >> 16) & 0xFF);bmpHeader[5] = (uint8_t)((imageDataSize >> 24) & 0xFF);// 写入BMP文件头部信息fwrite(bmpHeader, 1, 54, file);// 写入图像数据fwrite(imageData, width * height * 3, 1, file);fclose(file);
}//灰度线性拉伸
//pGryImg:灰度图像数据的指针。
//width:图像的宽度。
//height:图像的高度。
//k:线性拉伸的斜率。它控制着拉伸的速率或程度。当(k) 大于 1 时,图像的对比度增加;当(k) 小于 1 时,对比度降低。
//b:线性拉伸的偏移。它控制着拉伸后灰度值的起始位置。当(b) 大于 0 时,图像的整体亮度增加;当(b) 小于 0 时,整体亮度减小。
void LinearStretchDemo(uint8_t* pGryImg, int width, int height, double k, double b)
{uint8_t* pCur, * pEnd;int LUT[256];    //因为只有[0,255]共256个灰度值//step1. 生成查找表for (int g = 0; g < 256; g++){LUT[g] = max(0, min(255, k * g + b));}//step2. 进行变换for (pCur = pGryImg, pEnd = pGryImg + width * height; pCur < pEnd; pCur++){*pCur = LUT[*pCur];}//step3. 结束return;
}//统计图像灰度值
//pImg:灰度图像数据的指针。
//width:图像的宽度。
//height:图像的高度。
//* histogram:数组首元素地址,需要一个能储存256个变量的整型数组
void GetHistogram(uint8_t* pImg, int width, int height, int* histogram)
{uint8_t* pCur;uint8_t* pEnd = pImg + width * height;// 初始化直方图数组memset(histogram, 0, sizeof(int) * 256);// 直方图统计for (pCur = pImg; pCur < pEnd;){histogram[*pCur]++;pCur++;}// 函数结束return;
}//亮度和对比度
//储存histogram灰度直方图的指针
//接收亮度的变量地址
//接收对比度的变量地址
void GetBrightContrast(int* histogram, double* bright, double* contrast)
{int g;double sum, num; //书上说图像很亮时,int有可能会溢出,所以我这里直接用doubledouble fsum;//step.1 求亮度for (sum = num = 0, g = 0; g < 256; g++){sum += histogram[g] * g;num += histogram[g];}*bright = sum * 1.0 / num;//step.2 求对比度for (fsum = 0.0, g = 0; g < 256; g++){fsum += histogram[g] * (g - *bright) * (g - *bright);}*contrast = sqrt(fsum / (num - 1)); //即Std Dev//step.3 结束return;
}//pGryImg:灰度图像数据的指针。
//width:图像的宽度。
//height:图像的高度。
void RmwHistogramEqualize(uint8_t* pGryImg, int width, int height)
{uint8_t* pCur, * pEnd = pGryImg + width * height; // 指针变量,指向当前像素和图像末尾int histogram[256], LUT[256], A, g; // 直方图数组、查找表数组、累积直方图、灰度级// step.1-------------求直方图--------------------------//memset(histogram, 0, sizeof(int) * 256); // 初始化直方图数组为0for (pCur = pGryImg; pCur < pEnd;)histogram[*(pCur++)]++; // 统计每个灰度级出现的频率// step.2-------------求LUT[g]-------------------------//A = histogram[0]; // 初始化累积直方图的值为第一个灰度级的频率LUT[0] = 255 * A / (width * height); // 计算第一个灰度级对应的均衡化后的灰度值for (g = 1; g < 256; g++) {A += histogram[g]; // 更新累积直方图的值LUT[g] = 255 * A / (width * height); // 计算当前灰度级对应的均衡化后的灰度值}// step.3-------------查表------------------------------//for (pCur = pGryImg; pCur < pEnd;)*(pCur++) = LUT[*pCur]; // 使用查找表对每个像素进行灰度映射// step.4-------------结束------------------------------//return;
}//对数变换
//pGryImg:灰度图像数据的指针。
//width:图像的宽度。
//height:图像的高度。
void RmwLogTransform(uint8_t* pGryImg, int width, int height)
{uint8_t* pCur, * pEnd = pGryImg + width * height; // 指向灰度图像数据的当前指针和结束指针int histogram[256], LUT[256], gmax, g; // 声明直方图数组、查找表数组、最大灰度值、当前灰度值double c; // 声明常数c// step.1-------------求直方图--------------------------//memset(histogram, 0, sizeof(int) * 256); // 初始化直方图数组为0for (pCur = pGryImg; pCur < pEnd;)histogram[*(pCur++)]++; // 遍历图像数据,统计每个灰度级的像素数量// step.2-------------最大值---------------------------//for (gmax = 255; gmax >= 0; gmax++)if (histogram[gmax]) break; // 从最大灰度级开始向低灰度级搜索,找到第一个非零灰度级,即最大灰度值// step.3-------------求LUT[g]-------------------------//c = 255.0 / log(1 + gmax); // 计算常数cfor (g = 0; g < 256; g++){LUT[g] = (int)(c * log(1 + g)); // 根据对数变换公式计算查找表中每个灰度级的映射值}// step.4-------------查表------------------------------//for (pCur = pGryImg; pCur < pEnd;)*(pCur++) = LUT[*pCur]; // 使用查找表将图像数据进行对数变换// step.5-------------结束------------------------------//return; // 函数结束
}

次回预告

图像的质量是什么,如何提高图像的质量,中值滤波,均值滤波,最小值滤波,最大值滤波,高斯滤波,二值图像滤波,数学形态滤波,条件滤波又都代表着什么?

关于噪声的处理方法,下一篇博文将会讲解图像平滑

感谢您的阅读~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2980421.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Github Copilot正版的激活成功,终于可以chat了

Github Copilot 代码补全等功能&#xff0c;提高写代码的效率 https://web.52shizhan.cn/activity/copilot 登录授权后&#xff0c;已经可以使用&#xff0c;完美。如图

OpenFE:开启数据特征工程新时代

OpenFE&#xff1a;开启数据特征工程新时代 数据特征工程是机器学习和数据分析领域中至关重要的一环&#xff0c;它涉及对原始数据进行处理和转换&#xff0c;以提取出有用的特征&#xff0c;为模型构建和预测提供更好的输入。在这个领域中&#xff0c;Python库OpenFE为数据科学…

查找两个字符串的最长公共子串

暴力解法 #include <iostream> #include <vector> #include <cstring> using namespace std; string a, b, minn ""; // a和b是我们输入的 // minn存储的是我们最小的那个字符串string cut(int l, int r) {string tmp "";for (int i …

大小端解释以及如何使用程序判断IDE的存储模式

今天让我们来了解一下大小端的概念吧 什么是大小端&#xff1f; 大端&#xff08;存储&#xff09;模式&#xff1a;指的是数据的低位保存在内存的高地址处&#xff0c;而数据的高位则保存在内存的低地址处。 小端&#xff08;存储&#xff09;模式&#xff1a;指的是数据的低位…

Discuz! X系列版本安装包

源码下载地址&#xff1a;Discuz! X系列版本安装包 很多新老站长跟我说要找Discuz! X以前的版本安装包&#xff0c;我们做Discuz! X开发已经十几年了&#xff0c;这些都是官方原版安装包&#xff0c;方便大家使用&#xff08;在官网已经找不到这些版本的安装包了&#xff09; …

新网站上线需要注意什么?

质量保证&#xff1a;确保网站的所有功能和页面都经过了充分的测试&#xff0c;并且在各种不同的浏览器和设备上都能够正常运行。检查所有链接、表单和交互式元素&#xff0c;确保它们都能够按照预期工作。优化性能&#xff1a;确保网站加载速度快&#xff0c;响应迅速。优化图…

详细UI色彩搭配方案分享

UI 配色是设计一个成功的用户界面的关键之一。UI 配色需要考虑品牌标志、用户感受、应用程序的使用场景&#xff0c;这样可以帮助你创建一个有吸引力、易于使用的应用程序。本文将分享 UI 配色的相关知识&#xff0c;帮助设计师快速构建 UI 配色方案&#xff0c;以满足企业的需…

环回光模块

&#x1f44f;&#x1f4cd;环回光模块&#xff08;Lookback&#xff09;&#xff0c;也称为光模块自环测试回路器&#xff0c;用于测试系统或网络中的信号回传。通过回传信号&#xff08;主要是成对连接发射端到接收端的一侧&#xff09;&#xff0c;可以检测网络链路中各种潜…

文件上传的复习(upload-labs1-5关)

什么是文件上传漏洞&#xff1f; 文件上传本身是一个正常的业务需求&#xff0c;对于网站来说&#xff0c;很多时候也确实需要用户将文件上传到服务器&#xff0c;比如&#xff1a;上传图片&#xff0c;资料。 文件上传漏洞不仅涉及上传漏洞这个行为&#xff0c;还涉及文件上…

安卓手机投屏到电脑:实现屏幕共享的实用指南

“吃饭的时候觉得手机看剧实在是太费眼睛了&#xff0c;终于经过一番摸索、试验&#xff0c;我探索出了新大陆&#xff01;只要将安卓手机投屏到电脑&#xff0c;就可以放大画面&#xff0c;还能同步操作&#xff0c;远离屏幕的同时还能够看清视频&#xff01;这些方法太实用啦…

JS -正则表达式

正则表达式 关于正则表达式&#xff0c;其实我写过几篇了&#xff0c;但是真正的正则表达式其实主要用于定义一些字符串的规则&#xff0c;计算机根据给出的正则表达式&#xff0c;来检查一个字符串是否符合规则。 我们来看一下&#xff0c;在JS中如何创建正则表达式对象。 语…

公链系统开发全指南: 从规划到实施

在区块链技术的迅速发展和应用推广下&#xff0c;公链系统的开发成为了当前数字资产领域的热门话题。从规划到实施&#xff0c;公链系统的开发过程需要经历多个步骤&#xff0c;下文将详细介绍每个步骤。 第一步: 规划和设计 市场调研: 分析市场需求和竞争情况&#xff0c;确定…

Power BI 如何创建页面导航器?(添加目录按钮/切换页面按钮)

Power BI 中页导航是什么&#xff1f; 在Power BI中&#xff0c;页导航&#xff08;Page Navigation&#xff09;是指在报告中创建多个页面&#xff08;页&#xff09;&#xff0c;然后允许用户在这些页面之间进行导航的功能。 如下图所示&#xff0c;页导航的选项和报告中的…

多模态模型

转换器成功作为构建语言模型的一种方法&#xff0c;促使 AI 研究人员考虑同样的方法是否对图像数据也有效。 研究结果是开发多模态模型&#xff0c;其中模型使用大量带有描述文字的图像进行训练&#xff0c;没有固定的标签。 图像编码器基于像素值从图像中提取特征&#xff0c;…

调度问题变形的贪心算法分析与实现

调度问题变形的贪心算法分析与实现 一、问题背景与算法描述二、算法正确性证明三、算法实现与分析四、结论 一、问题背景与算法描述 带截止时间和惩罚的单位时间任务调度问题是一个典型的贪心算法应用场景。该问题的目标是最小化超过截止时间导致的惩罚总和。给定一组单位时间…

基于51单片机的数码管显示的proteus仿真

文章目录 一、数码管二、单个数码管显示0~F仿真图仿真程序 三、数码管静态显示74HC138译码器74HC245缓冲器仿真图仿真程序 四、数码管动态显示仿真图仿真程序 三、总结 一、数码管 数码管&#xff0c;也称作辉光管&#xff0c;是一种可以显示数字和其他信息的电子设备。它的基…

毕业撒花 流感服务小程序的设计与实现

目录 1.1 总体页面设计 1.1.1 用户首页 1.1.2 新闻页面 1.1.3 我的页面 1.1.5 管理员登陆页面 1.1.6 管理员首页 1.2 用户模块 1.2.1 体检预约功能 1.2.2 体检报告功能 1.2.4 流感数据可视化功能 1.2.5 知识科普功能 1.2.6 疾病判断功能 1.2.7 出示个人就诊码功能 …

2(第一章,数据管理)

目录 概述 基本概念 数据与信息 数据管理原则 1. 数据是有独特属性的资产 2. 数据的价值可以用经济术语来表示 数据价值评估模型 3. 管理数据意味着对数据的质量管理 4. 管理数据需要元数据 5. 数据管理需要规划 6. 数据管理须驱动信息技术决策 7. 数据管理是跨职能…

40-50W 1.5KVDC 隔离 宽电压输入 DC/DC 电源模块——TP40(50)DC 系列

TP40(50)DC系列电源模块额定输出功率为40-50W、应用于2:1、4&#xff1a;1电压输入范围 9V-18V、18V-36V、36V-75V、9V-36V、18V-75V的输入电压环境&#xff0c;输出电压精度可达1%&#xff0c;可广泛应用于通信、铁路、自动化以及仪器仪表等行业。

AI-数学-高中-40法向量求法

原作者视频&#xff1a;【空间向量】【考点精华】3法向量求法稳固&#xff08;基础&#xff09;_哔哩哔哩_bilibili 注意&#xff1a;法向量对长度没有限制&#xff0c;求法向量时&#xff0c;可以假设法向量z为任意一个取非0的值。 示例1&#xff1a; 示例2&#xff1a;