Jammy@Jetson Orin - Tensorflow Keras Get Started: 000 setup for tutorial

Jammy@Jetson Orin - Tensorflow & Keras Get Started: 000 setup for tutorial

  • 1. 源由
  • 2. 搭建环境
    • 2.1 安装IDE环境
    • 2.2 安装numpy
    • 2.3 安装keras
    • 2.4 安装JAX
    • 2.5 安装tensorflow
    • 2.6 安装PyTorch
    • 2.7 安装nbdiff
  • 3. 测试DEMO
    • 3.1 numpy版本兼容问题
    • 3.2 karas API - model.compile问题
    • 3.3 karas API - model.predict问题
  • 4. 总结
  • 5. 参考资料

1. 源由

凡事开头难!入门搭建环境难!

这里就从最基本的环境搭建和大家共一起勉!

2. 搭建环境

2.1 安装IDE环境

  • jupyterlab环境
$ pip install jupyterlab
$ jupyter lab
  • jupyternotebook环境
$ pip install notebook
$ jupyter notebook

注:推荐使用jupyterlab。

2.2 安装numpy

$ pip install -U numpy  //升级到最新版本$ python
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> numpy.__version__
'1.26.4'
>>>

注:升级到指定版本可以使用命令pip install numpy==1.24.3

2.3 安装keras

$ pip install --upgrade keras$ python
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import keras
>>> keras.__version__
'3.3.2'
>>>

2.4 安装JAX

  • CPU-only (Linux/macOS/Windows)
$ pip install -U "jax[cpu]"
  • GPU (NVIDIA, CUDA 12, x86_64)
$ pip install -U "jax[cuda12_pip]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html

注:更多关于JAX的硬件版本信息,详见:Installing JAX

2.5 安装tensorflow

$ pip install tensorflow$ python
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> tf.__version__
'2.16.1'
>>> tf.__path__
['/home/daniel/.local/lib/python3.10/site-packages/keras/api/_v2', '/home/daniel/.local/lib/python3.10/site-packages/keras/_tf_keras', '/home/daniel/.local/lib/python3.10/site-packages/tensorflow', '/home/daniel/.local/lib/python3.10/site-packages/tensorflow/_api/v2']
>>>

2.6 安装PyTorch

具体安装版本因硬件差异,命令不同,详见:Install pytorch

在这里插入图片描述因为,笔者这里环境是Jetson Orin,所以选择了上面的配置版本:

$ pip install torch torchvision torchaudio

2.7 安装nbdiff

鉴于.ipynb文件会包含最后一次执行的输出信息,不像通常代码diff那样可以看的很清楚,这里需要安装一个类似diff的命令。

$ pip install nbdime$ nbdiff --help
usage: nbdiff [-h] [--version] [--config] [--log-level {DEBUG,INFO,WARN,ERROR,CRITICAL}] [-s] [-o] [-a] [-m] [-i] [-d] [--color-words] [--no-color] [--no-git] [--no-use-diff] [--out OUT][base] [remote] [paths ...]Compute the difference between two Jupyter notebooks.positional arguments:base                  the base notebook filename OR base git-revision.remote                the remote modified notebook filename OR remote git-revision.paths                 filter diffs for git-revisions based on pathoptions:-h, --help            show this help message and exit--version             show program's version number and exit--config              list the valid config keys and their current effective values--log-level {DEBUG,INFO,WARN,ERROR,CRITICAL}set the log level by name.--color-words         whether to pass the --color-words flag to any internal calls to git diff--no-color            prevent use of ANSI color code escapes for text output--no-git              prevent use of git for formatting diff/merge text output--no-use-diff         prevent use of diff/diff3 for formatting diff/merge text output--out OUT             if supplied, the diff is written to this file. Otherwise it is printed to the terminal.ignorables:Set which parts of the notebook (not) to process.-s, --sources, -S, --ignore-sourcesprocess/ignore sources.-o, --outputs, -O, --ignore-outputsprocess/ignore outputs.-a, --attachments, -A, --ignore-attachmentsprocess/ignore attachments.-m, --metadata, -M, --ignore-metadataprocess/ignore metadata.-i, --id, -I, --ignore-idprocess/ignore identifiers.-d, --details, -D, --ignore-detailsprocess/ignore details not covered by other options.

3. 测试DEMO

学习是一个过程,是一种大学生应该掌握的技能。手把手教那是在学校,真正的学习是不断的自我学习和提高,这种螺旋式学习技能将会受益一辈子!

即使很好的搭建了环境,代码依然会出现问题!

001_Keras-Linear-Regression

$ git log -n 2
commit 84b7f5ee7c80d9faecf79af96f8a677f47c44f0d (HEAD -> main, origin/main, origin/HEAD)
Author: Daniel Li <lida_mail@163.com>
Date:   Tue Apr 23 16:49:42 2024 +0800Fix Keras-Linear-Regression demo code issue with Jammy(Jetson Orin)commit 8c89b4c2b9e9df2e854f280ce19ed3010c7ac2fc
Author: Daniel Li <lida_mail@163.com>
Date:   Tue Apr 23 15:00:46 2024 +0800Add raw 001_Keras-Linear-Regression/Keras-Linear-Regression.ipynb

3.1 numpy版本兼容问题

在这里插入图片描述
解决方法:numpy版本降级

$ pip install numpy==1.23.4

3.2 karas API - model.compile问题

在这里插入图片描述

解决方法:修正API入参参数

## modified /cells/15/source:
@@ -1,2 +1,2 @@
-model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=.005),
+model.compile(optimizer=tf.keras.optimizers.RMSprop(learning_rate=.005),loss='mse')

3.3 karas API - model.predict问题

在这里插入图片描述
解决方法:修正API入参参数

## modified /cells/23/source:
@@ -1,5 +1,5 @@# Predict the median price of a home with [3, 4, 5, 6, 7] rooms.
-x = [3, 4, 5, 6, 7]
-y_pred = model.predict(x)
-for idx in range(len(x)):
-    print("Predicted price of a home with {} rooms: ${}K".format(x[idx], int(y_pred[idx]*10)/10))+rooms = [3, 4, 5, 6, 7]
+y_pred = model.predict(x = np.array(rooms))
+for idx in range(len(rooms)):
+    print("Predicted price of a home with {} rooms: ${}K".format(rooms[idx], int(y_pred[idx][0]*10)/10))

4. 总结

学习的第一步,总是感觉那么繁琐,如果感兴趣可以直接写一个setup.sh脚本。

但从学习的角度,一个问题,一个脚印,一步步的操作,纠错,理解,为后续组件/系统的理解可以奠定非常好的基础。

万事开头难,其实就是这么简单的一回事情!

关于线性拟合,这个大家估计能看到这里的兄弟们,都懂的。后面我们也会专门看下科学计算方法和这个神经网络拟合之间的差异。

切记一点,神经网络这个是模拟人类大脑的的工作模式,尽管对于人类大脑工作原理远没有搞得这么清楚,但是从目前的一些视频/图片识别角度看,该方法确实比较好的解决了多因素预测的准确性问题(大概率的准确性)。

相信数学原理更深层次的论证有待去研究渐近和收敛的问题,或者说需要更好的专业领域知识叠加神经网络算法来做到更好的应用。

5. 参考资料

【1】Jammy@Jetson Orin - Tensorflow & Keras Get Started

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2979117.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

STC15L2K60S2-28I-LQFP44 单片机芯片 STC宏晶

STC15L2K60S2-28I-LQFP44 规格信息&#xff1a; 产品类型STC(宏晶) UART/USART2 额定特性- SPI1 USB Device0 USB Host/OTG0 PWM3 I2C&#xff08;SMBUS/PMBUS&#xff09;0 LCD0 工作电压2.4V ~ 3.6V EEPROM 尺度1KB Ethernet0 A/D8x10bit CAN0 D/A3x10bit CPU…

【VI/VIM】基本操作备忘录

简介 新建/打开文件 工作模式 常用命令 补全命令 命令模式输入&#xff1a;ctrl p 移动命令 文本选中 撤销、删除 复制粘贴 替换 缩排 查找 替换 插入 分屏 练习

Spectre-v2 以及 Linux Retpoline技术简介

文章目录 前言一、Executive Summary1.1 Spectre-v2: Branch Predictor Poisoning1.2 Mitigating Spectre-v2 with Retpolines1.3 Retpoline Concept 二、BackgroundExploit Composition 三、(Un-)Directing Speculative Execution四、Construction (x86)4.1 Speculation Barri…

Linux文件权限核心知识

1.1 权限概念 Linux 里面不同 用户 对不同 文件、目录、用户 等对象的控制能力。 1.2 权限属性 ##创建文件 [rootoldboyedu ~]# touch oldboy.txt [rootoldboyedu ~]# ls -l oldboy.txt -rw-r--r-- 1 root root 14 9月 26 10:22 oldboy.txt ##创建目录 [rootoldboyedu ~]# mk…

项目上线流程(保姆级教学)

01&#xff1a;注册阿里云账户 02&#xff1a;登录阿里云 03&#xff1a;在桌面新建记事本保存个人账号密码等信息 04&#xff1a;完成重置密码 05&#xff1a;安装宝塔面板 命令行 yum install -y wget && wget -O install.sh http://download.bt.cn/install/instal…

数据结构之顺序表的实现(C语言版)

Hello, 大家好&#xff0c;我是一代&#xff0c;今天给大家带来有关顺序表的有关知识 所属专栏&#xff1a;数据结构 创作不易&#xff0c;望得到各位佬们的互三呦 一.前言 1.首先在讲顺序表之前我们先来了解什么是数据结构 数据结构是由“数据”和“结构”两词组合⽽来。 什…

Android集成Sentry实践

需求&#xff1a;之前使用的是tencent的bugly做为崩溃和异常监控&#xff0c;好像是要开始收费了&#xff0c;计划使用开源免费的sentry进行替换。 步骤&#xff1a; 1.修改工程文件 app/build.gradle apply plugin: io.sentry.android.gradle sentry {// 禁用或启用ProGua…

将彩色图转化为灰度图及其原理介绍

彩色图介绍 彩色图像是一种包含颜色信息的图像&#xff0c;通常由红色、绿色和蓝色&#xff08;RGB&#xff09;三个颜色通道组成。这三种颜色通道可以叠加在一起来形成各种不同的颜色。 彩色图像中的每个像素都有三个数值&#xff0c;分别表示红色、绿色和蓝色通道的强度或亮…

【数据结构(邓俊辉)学习笔记】绪论04——算法分析

文章目录 0. 前言1. 算法分析2.级数2.1基本形式2.2 收敛级数 3.循环 vs 级数4.示例 0. 前言 通过以基本计算模型作为参照&#xff0c;并且以大O记号的形式在上面添加适当刻度&#xff0c;已经建立一套对DSA进行分析的完整工具和体系。不清楚的可以看看复杂度度量 、复杂度分析…

Mybatisplus LambdaQueryWrapper表达式使用DATE_FORMAT比较日期函数

背景&#xff1a; 最近遇到一个问题&#xff0c;数据库保存的日期字段是如下格式 但是我们需要比较的日期为 2020-08-01格式&#xff0c; 所以我们要将日期格式化 使用 Mybatisplus LambdaQueryWrapper的情况下可用下面的方式做参考 LambdaQueryWrapper<SysDicCode> la…

代码随想录算法训练营DAY35|C++贪心算法Part.4|860.柠檬水找零、406.根据身高重建队列、452. 用最少数量的箭引爆气球

文章目录 860.柠檬水找零伪代码实现CPP代码 406.根据身高重建队列思路伪代码实现代码优化 CPP代码 452. 用最少数量的箭引爆气球思路伪代码实现CPP代码 860.柠檬水找零 力扣题目链接 文章讲解&#xff1a;860.柠檬水找零 视频讲解&#xff1a;贪心算法&#xff0c;看上去复杂&a…

Windows系统部署Emby影音服务并实现无公网IP访问本地影视资源

文章目录 1.前言2. Emby网站搭建2.1. Emby下载和安装2.2 Emby网页测试 3. 本地网页发布3.1 注册并安装cpolar内网穿透3.2 Cpolar云端设置3.3 Cpolar内网穿透本地设置 4.公网访问测试5.结语 1.前言 本文主要介绍如何在Windows系统中&#xff0c;使用Cpolar内网穿透Emby&#xf…

C++入门(3)

文章目录 C入门auto同一行中定义多个变量auto不能推到的场景基于范围的for循环(C11)10. 指针空值nullptr(C11) C入门 auto auto&#xff1a;C11中&#xff0c;标准委员会赋予了auto全新的含义即&#xff1a;auto不再是一个存储类型指示符&#xff0c;而是作为一个新的类型指示…

linux信号机制分析

概念 信号递达&#xff1a;实际执行信号的处理动作就是信号递达 信号未决&#xff1a;信号从产生到递达之间的状态就是信号未决&#xff08;未决就是没有解决&#xff09; 收到某信号后&#xff0c;把未决信号集中的此信号置为1&#xff08;1表示未解决的信号&#xff09;&a…

2010年认证杯SPSSPRO杯数学建模B题(第一阶段)交通拥堵问题全过程文档及程序

2010年认证杯SPSSPRO杯数学建模 交通拥堵问题 B题 Braess 悖论 原题再现&#xff1a; Dietrich Braess 在 1968 年的一篇文章中提出了道路交通体系当中的Braess 悖论。它的含义是&#xff1a;有时在一个交通网络上增加一条路段&#xff0c;或者提高某个路段的局部通行能力&a…

OceanBase V4.2特性解析:用 Show Trace 快速定位数据库性能瓶颈

在数据库日常运维中&#xff0c;当遇到慢SQL问题时&#xff0c;若无法迅速查明原因&#xff0c;将极大地影响用户的使用感受&#xff0c;甚至可能引发业务或服务的中断。相较于单机数据库&#xff0c;分布式数据库系统因其涉及多个节点和多组件的协同工作&#xff0c;集群规模可…

计算IP地址总个数的方法及其应用

IP地址是计算机网络中用于唯一标识和定位设备的数字地址&#xff0c;是Internet Protocol&#xff08;IP&#xff09;的核心组成部分。计算IP地址的总个数是网络规划和管理中的重要任务之一&#xff0c;本文将介绍计算IP地址总个数的方法及其应用。 IP地址查询&#xff1a;IP数…

华为公司战略规划和落地方法之五看三定工具解析【PPT图片】(内含超级福利)

导言 华为公司最厉害之处就是战略上的高举高打&#xff0c;“吹过的牛都实现了”。支撑华为公司战略从规划到落地的主要工具很多&#xff0c;其中“五看三定”是战略规划时最核心的方法之一。本资料将介绍五看三定的核心精髓。欢迎学习&#xff01; 本材料结合谢宁老师专著《华…

【漏洞复现】锐捷 EG易网关 phpinfo.view.php 信息泄露漏洞

0x01 产品简介 锐捷EG易网关是一款综合网关产品&#xff0c;集成了先进的软硬件体系构架&#xff0c;并配备了DPI深入分析引擎、行为分析/管理引擎。这款产品能在保证网络出口高效转发的基础上&#xff0c;提供专业的流控功能、出色的URL过滤以及本地化的日志存储/审计服务。 …

# 从浅入深 学习 SpringCloud 微服务架构(二)模拟微服务环境(2)通过 RestTemplate 调用远程服务

从浅入深 学习 SpringCloud 微服务架构&#xff08;二&#xff09;模拟微服务环境&#xff08;2&#xff09;通过 RestTemplate 调用远程服务 段子手168 1、打开 idea 创建父工程 创建 artifactId 名为 spring_cloud_demo 的 maven 工程。 --> idea --> File -->…