2010年认证杯SPSSPRO杯数学建模B题(第一阶段)交通拥堵问题全过程文档及程序

2010年认证杯SPSSPRO杯数学建模

交通拥堵问题

B题 Braess 悖论

原题再现:

  Dietrich Braess 在 1968 年的一篇文章中提出了道路交通体系当中的Braess 悖论。它的含义是:有时在一个交通网络上增加一条路段,或者提高某个路段的局部通行能力,反而使所有出行者的出行时间都增加了,这种为了改善通行能力的投入不但没有减少交通延误,反而降低了整个交通网络的服务水平。人们对这个问题做过许多研究,在城市建设当中也尽量避免这种现象的发生。但在复杂的城市道路当中,Braess 悖论仍然不时出现,造成实际交通效率的显著下降。在此,请你通过合理的模型来研究和解决城市交通中的 Braess 悖论。
  第一阶段问题:
  (1) 通过分析实际城市的道路交通情况(自行查询的数据需给出引用来 1源),建立合理的模型,判断在北京市二环路以内的路网中(包括二环路)出现的交通拥堵,是否来源于 Braess 悖论所描述的情况。
  (2) 请你建立模型以分析:如果司机广泛使用可以反映当前交通拥堵情况的GPS 导航系统,是否会缓解交通堵塞,并请估计其效果。

整体求解过程概述(摘要)

  本文首先通过对非合作网络中 Nash 平衡点与 Pareto 边界理论的分析,通过单起点单终点的简单路网入手, 分析 Braess 悖论的成因,Braess 悖论实质上是非合作网络中 Nash 平衡点不满足 Pareto 最优性时出现的现象。定量的给出出行时间与流量的关系,这里引入了路段延迟参数的概念,量化得到延迟参数与路段流量,出行时间,出行密度之间的关系。进而通过建立北京二环区交通路网模型,拟合出 flow ~ / L speed 关系曲线,得到各路段的延迟参数,进而得到单月内北京二环区 Pareto 最优解的判别条件。
  其次,根据 Pareto 边界理论,我们以年月为单位统计北京二环以内交通流量因素,得到城区交通年延迟参数,并计算了共 120 个月的延迟参数。接着,我们构建了 Nash 均衡原理模型,引入了路段 Nash 平衡比率的概念,即当某一时间范围内,路段 Nash 平衡比率低于路段延迟参数时,则发生了 Braess 悖论,当同时又满足 Nash平衡波动率超过 30%时,为严重 Braess 悖论,从而完善了 Nash 平衡比率理论方程。
  再次,根据已建立的 Nash 平衡比率理论方程,在此基础上构建小波神经网络来对北京二环区交通路网路段 Nash 平衡比率进行预测,这里我们将选择路段延迟参数为样本,根据路段延迟参数与路段 Nash平衡比率的动态关系式,对路段 Nash 平衡比率进行计算。得到结果:东城区,朝阳区路段常年持续存在 BRAESS悖论情况(平均每年超过 6 个月)。尽管我们发现坛路拓宽,普方路拓宽,永定门桥延修,天坛路改道会给北京二环区南部路段带来交通改善,但结果显示,整个北京二环路段的交通情况的平衡性变得更不稳定,BRAESS 悖论情况更加突出。譬如在 2006 年,2009 年的东城区,朝阳区路段堵塞问题更加尖锐,这也使得本来相对通畅的南段也出现 BRAESS 悖论情况。
  接着,我们建立了 GPS 动态导航的车辆运行模型,量化得到了时耗期望值和时耗方差两个目标函数并作为 ATM 路由选择的约束条件,以降低 Nash 平衡比率为目标,通过ATM 路由选择进行 GPS 导航对路段影响的预测。当我们控制业务源提高 GPS 使用率时,路段 NASH 平衡比率也持续上升,使用率升至 0.34 时,NASH 平衡比率上升幅度最大化。
  最后,我们通过灰色 Gompertz 模型对 ATM 路由选择算法进行误差分析,检验结果表明此抽检方案为合理方案,误差范围 5.84%。通过遗传算法对路段 Nash 平衡比率进行优化,得到最优化后的结果,证明了ATM路由选择算法对GPS动态导航研究的可靠性。

问题分析

  首先分析单一路段在单一时间范围内的 BRAESS 悖论情况,然后以北京二环以内的综合路段为考虑对象,天坛路拓宽,普方路拓宽,永定门桥延修,天坛路改道的 NASH 平衡比率,并通过 MATLAB 工具 CHIP()提取出月波动率超过 30%的比率数进行标定,同时,我们将近十年的北京二环以内主要路段的 BRAESS 悖论情况进行分析,并讨论 GPS 动态导航对路段BRAESS 悖论现象的影响。

模型的假设:

  (1)天气因素对 BRAESS 悖论的影响忽略不计
  (2)《北京交通发展年报》及《全市综合交通调查》提供了精确无误的数据
  (3)北京市区内地铁路线改造的影响忽略不计。

论文缩略图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

% III 为预测点 
% X 为预测序列(一行) 
% X0X 为预测值(对有 III 而言) 
% Q0Q 为预测精度 
% PP 为小误差概率 
% C 为后验误差比 
% PP>0.95 或 C<0.351() 
% PP>0.80 或 C<0.502(合格) 
% PP>0.70 或 C<0.653(勉强合格) 
% PP<=0.70 或 C>=0.654(不合格) 
% 
% AUA=[A;U;UA;XUA]; 
% XEG=[XG;EG]; 
% PPC=[PP;C]; 
FUNCTION [X0X,Q0Q,PPC,PDDSTR,XII,AUA,XEG]=GM11(X,III); 
%%%%%%%%%%%%%%%%%%%%%%% %例子 
%X=[3.711 3.723 3.716 3.721 3.728] 
%X=[2.67 3.13 3.25 3.36 3.56 3.72] 
% X=[2.97 3.23 3.29 3.46 3.59 3.71] 
%X=[43.45 47.05 52.75 57.14 62.64 68.52] 
% X=[3.38 4.27 4.55 4.69 5.59] 
% X=[4.24 4.33 5.20 6.42 7.32 8.53 8.82 10.72] 
% 
% X=[3.38 4.27 4.55 4.69 5.59] 
% III=[ 5 6 7 8 9 10 11] 
% III=[] %%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% %% 
%% 一、数据处理 %% 
%% %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %1 建立 X1 生成数列 
%FORMAT LONG 
A12=SIZE(X); 
N=A12(2); 
X1=ONES(1,N); 
X1(1)=X(1); 
FOR I=2:N X1(I)=X1(I-1)+X(I); 
END 
X1; 
%2 构造数据距阵 B 和数据向量 YN: 
B=ONES(N-1,2); 
FOR I=1:N-1 B(I,1)=(-0.5)*(X1(I)+X1(I+1)); 
END 
YN=ONES(N-1,1); 
FOR I=2:N YN(I-1,1)=X(I); 
END 
B; 
YN; 
%3 计算 B'B,INV(B'B)和 B'YN;得到参数 A 和 U 
%BTB=B'*B;% 
%BTB=INV(BTB); 
%BTYN=B'*YN; 
%AU=BTB*BTYN; 
AU=INV(B'*B)*B'*YN; A=AU(1,1); 
U=AU(2,1); % FPRINTF('参数 A:%F\N',A); 
% FPRINTF('参数 U:%F\N',U); 
UA=U/A; 
XUA=X(1)-UA; 
%4 得出预测模型 
%预测第 I 的预测值 
%有问题 % XI1=XUA*EXP((-A)*I)+UA;% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% %% 
%% 二、模型检验 %% 
%% %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%5:残差检验 
%51 计算 X1 
X1=ONES(1,N); 
FOR I=1:N X1(I)=XUA*EXP((-A)*(I-1))+UA; 
END 
X1; 
%52 累减生成 X0 序列 
X0=ONES(1,N); 
X0(1)=X1(1); 
FOR I=2:N X0(I)=X1(I)-X1(I-1); 
END 
X0; 
%53 计算绝对误差及相对误差序列 
DD=ABS(X0-X);%计算绝对误差序列 
DDD=(DD./X).*100;%计算相对误差序列 X% 
% FPRINTF('相对误差序列:'); 
% FPRINTF('%F%% ',DDD); 
% FPRINTF('\N'); 
%6 进行关联度检验 
%61 计算序列绝对误差 XX 
XX=ONES(1,N); 
FOR I=1:N XX(I)=X(I)-X0(I); 
END 
% FPRINTF('序列绝对误差:'); 
% FPRINTF('%F ',XX); 
% FPRINTF('\N'); MINXX=MIN(DD); 
% FPRINTF('最小差:'); 
% FPRINTF('%F ',MINXX); 
% FPRINTF('\N'); MAXXX=MAX(DD); 
% FPRINTF('最大差:'); 
% FPRINTF('%F ',MAXXX); 
% FPRINTF('\N'); 
%62 计算关联系数 P=0.5 (则 R=0.6) 
P=0.5; 
NI=ONES(1,N);
FOR I=1:N NI(I)=(MINXX+P*MAXXX)/(DD(I)+P*MAXXX); 
END 
%63 计算关联度,(P=0.5 时,则 R=0.6) 
R=(1/N)*SUM(NI); 
% FPRINTF('请查找 P=0.5 是的检验准则 R=0.6 是否大于%F\N',R); 
%7 后验差检验 
%71 
XM=MEAN(X); 
%72 求的均方差 
S1=(SUM((X-XM).^2)/(N-1))^(1/2); 
%73 计算残差的均值 
DDM=MEAN(DD); 
%74 计算残差的均方差 
S2=(SUM((DD-DDM).^2)/(N-1))^(1/2); 
%75 计算后验误差比 C: 
C=S2/S1; 
% FPRINTF('验误差比 C:%F\N',C); 
%76 计算小误差概率 
%%%%%%%%%%%%%% PR=ABS(XX-MEAN(XX))<0.6745*S1; %M 满足条件的样本 
PA=SIZE(FIND(PR==1)); 
PS=PA(1,2); %M 满足条件的样本个数 
PB=SIZE(PR); 
PS=PB(1,2); %M 总样本个数 PP=PS/PS; %小误差概率 
% FPRINTF('小误差概率 PP:%F\N',PP); %%%%%%%%%%%%%%%% 
%检验 预测精度 YCD % FPRINTF(' PP>0.95 或 C<0.351()\N PP>0.80 或 C<0.502(合格)\N PP>0.70 或 C<0.653(勉强合格)\N PP<=0.70 
或 C>=0.654(不合格)\N\N',C); 
IF PP>0.95 PD=1; 
% FPRINTF(' 因 PP>0.95'); 
END 
IF PP<=0.95&PP>0.80 PD=2; 
% FPRINTF(' 因 PP<=0.95&PP>0.80'); 
END
IF PP<=0.80&PP>0.70 PD=3; 
% FPRINTF(' 因 PP<=0.80&PP>0.70'); 
END 
IF PP<=0.70 PD=4; 
% FPRINTF(' 因 PP<=0.70'); 
END PD1=0; 
IF C<0.35 PD1=1; 
% FPRINTF('C<0.35'); 
END 
IF C>=0.35&C<0.50 PD1=2; 
% FPRINTF('C>=0.35&C<0.50'); 
END 
IF C>=0.50&C<0.65 PD1=3; 
% FPRINTF('C>=0.50&C<0.65'); 
END 
IF C>=0.65 PD1=4; 
% FPRINTF('C>=0.65'); 
END PDD=MAX(PD,PD1); IF PDD==1 PDDSTR='1 级(好)'; 
% FPRINTF(' 故根据经验,预测精度为 1 级(好)\N\N'); 
END 
IF PDD==2 PDDSTR='2 级(合格)' ; 
% FPRINTF(' 故根据经验,预测精度为 2 级(合格)\N\N'); 
END 
IF PDD==3 PDDSTR='3 级(勉强合格)'; 
% FPRINTF(' 故根据经验,预测精度为 3 级(勉强合格)\N\N'); 
END 
IF PDD==4 PDDSTR='4 级(不合格)'; 
% FPRINTF(' 故根据经验,预测精度为 4 级(不合格)\N\N');
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2979093.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

OceanBase V4.2特性解析:用 Show Trace 快速定位数据库性能瓶颈

在数据库日常运维中&#xff0c;当遇到慢SQL问题时&#xff0c;若无法迅速查明原因&#xff0c;将极大地影响用户的使用感受&#xff0c;甚至可能引发业务或服务的中断。相较于单机数据库&#xff0c;分布式数据库系统因其涉及多个节点和多组件的协同工作&#xff0c;集群规模可…

计算IP地址总个数的方法及其应用

IP地址是计算机网络中用于唯一标识和定位设备的数字地址&#xff0c;是Internet Protocol&#xff08;IP&#xff09;的核心组成部分。计算IP地址的总个数是网络规划和管理中的重要任务之一&#xff0c;本文将介绍计算IP地址总个数的方法及其应用。 IP地址查询&#xff1a;IP数…

华为公司战略规划和落地方法之五看三定工具解析【PPT图片】(内含超级福利)

导言 华为公司最厉害之处就是战略上的高举高打&#xff0c;“吹过的牛都实现了”。支撑华为公司战略从规划到落地的主要工具很多&#xff0c;其中“五看三定”是战略规划时最核心的方法之一。本资料将介绍五看三定的核心精髓。欢迎学习&#xff01; 本材料结合谢宁老师专著《华…

【漏洞复现】锐捷 EG易网关 phpinfo.view.php 信息泄露漏洞

0x01 产品简介 锐捷EG易网关是一款综合网关产品&#xff0c;集成了先进的软硬件体系构架&#xff0c;并配备了DPI深入分析引擎、行为分析/管理引擎。这款产品能在保证网络出口高效转发的基础上&#xff0c;提供专业的流控功能、出色的URL过滤以及本地化的日志存储/审计服务。 …

# 从浅入深 学习 SpringCloud 微服务架构(二)模拟微服务环境(2)通过 RestTemplate 调用远程服务

从浅入深 学习 SpringCloud 微服务架构&#xff08;二&#xff09;模拟微服务环境&#xff08;2&#xff09;通过 RestTemplate 调用远程服务 段子手168 1、打开 idea 创建父工程 创建 artifactId 名为 spring_cloud_demo 的 maven 工程。 --> idea --> File -->…

基于SpringBoot的“幼儿园管理系统”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“幼儿园管理系统”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 个人信息界面图 缴费信息管理界…

STM32 HAL库F103系列之DAC实验(一)

DAC输出实验 原理图 DAC数据格式 DAC输出电压 DORX - 数据输出寄存器 Vref 3.3V 实验简要 1&#xff0c;功能描述 通过DAC1通道1(PA4)输出预设电压&#xff0c; 然后由ADC1通道1 (PA1) 采集&#xff0c;最后显示ADC转换的数字量及换算后的电压值 2&#xff0c;关闭通道1…

2024平替电容笔买哪个品牌好?iPad电容笔全能榜单热门款TOP5分享!

2024年&#xff0c;随着科技的不断发展和消费者对生活品质的追求&#xff0c;电容笔作为一种创新的无纸化工具&#xff0c;逐渐走进人们的生活和工作中。然而&#xff0c;在电容笔市场的繁荣背后&#xff0c;也隐藏着品质良莠不齐的现象。众多品牌为了追求利润&#xff0c;推出…

SCSS全局配置 vue项目(二)

目录 1、先要查看node版本 2、安装对应的node-sass、sass-loader版本 2.1根据项目使用的node版本安装对应的node-sass版本 2.2根据node-sass版本选择兼容的sass-loader版本&#xff0c;不然项目无法正常运行 3、在 vue.config.js 中配置&#xff1a; 4、在组件中…

QT QZipReader改进,以支持大于2G的zip文件

QZipReader对ZIP文件读取非常方便好用。即使在最新版的QT 6.6.1里&#xff0c;仍然存在一些问题&#xff1a;对于大于2G的zip文件不支持。 虽然有标准zlib可调用&#xff0c;但包装成一个易用且功能成熟的zip解压功能库&#xff0c;还是有很大的工作量&#xff0c;也需要有一定…

【理性讨论】进口主食冻干高价是不是智商税?SC主食冻干全解+测评分享

说到高端主食冻干产品&#xff0c;SC无疑是其中的明星品牌。无论是在哪个平台搜索“主食冻干”等关键词&#xff0c;SC都能轻松进入视线。在双11、618等促销活动中&#xff0c;尽管SC的价格相对较高&#xff0c;但其销量却还不错&#xff0c;这足以说明众多宠物主人对SC冻干品质…

国产技术迎来突破,光量子芯片横空出世,中文编程也有好消息

国外光刻机不再牛&#xff0c;随着这项技术问世&#xff0c;我们摆脱芯片卡脖子困境成为可能&#xff01; 欧美国家在科技领域一直遥遥领先&#xff0c;那我们该如何实现后来居上呢&#xff1f;答案就在于我国在全球处于领先地位的量子科技&#xff0c;以及新近问世、令人瞩目…

如何在React中构建动态下拉组件 - 解释React复合组件模式

下拉菜单长期以来一直是网站和应用程序中的重要组成部分。它们是用户交互的默默英雄&#xff0c;通过简单的点击或轻触默默地促进着无数的操作和决策。 今天你可能已经遇到了其中之一&#xff0c;无论是在你最喜爱的在线商店上选择类别&#xff0c;还是在注册表单上选择你的出…

骨传导耳机哪个牌子好?5款年度精品骨传导耳机推荐

在骨传导耳机最开始出现的时候&#xff0c;相信很多人都只关心骨传导耳机的外观颜值和特殊的传声方式&#xff0c;但当你真正用过一段时间后&#xff0c;对骨传导耳机有了更加深入的了解后就会关注到骨传导耳机的使用体验、音质表现、蓝牙性能等具体功能&#xff0c;而随着骨传…

上位机图像处理和嵌入式模块部署(树莓派4b的一种固件部署方法)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 如果软件开发好了之后&#xff0c;下面就是实施和部署。对于树莓派4b来说&#xff0c;部署其实就是烧录卡和拷贝文件。之前我们烧录卡&#xff0c;…

RK3568 学习笔记 : u-boot 千兆网络无法 ping 通PC问题的解决

前言 开发板型号&#xff1a; 【正点原子】 的 RK3568 开发板 使用 虚拟机 ubuntu 20.04 收到单独 编译 RK3568 u-boot 【问题】u-boot 千兆网络无法ping 通&#xff1f;Linux 下千兆网络正常&#xff0c;说明&#xff1a;开发板硬件正常 u-boot 下网络如果通了&#xff0c;…

Unity的旋转实现一些方法总结(案例:通过输入,玩家进行旋转移动)

目录 1. Transform.Rotate 方法 使用 2. Transform.rotation 或 Transform.localRotation 属性与四元数 使用方式&#xff1a; 小案例 &#xff1a;目标旋转角度计算&#xff1a;targetRotation&#xff08;Quaternion类型&#xff09; 玩家发现敌人位置&#xff0c;玩家…

【数据结构】AVL树(万字超详细 附动图)

一、前言 二、AVL树的性质 三、AVL树节点的定义 四、AVL树的插入 五、AVL树的平衡调整 六、AVL树的验证 6.1 验证有序 6.2 验证平衡 七、AVL树的删除 八、AVL树的性能和代码 一、前言 还没有学习过二叉搜索树的同学可以移步 【数据结构】二叉搜索树-CSDN博客https:/…

【C++】:构造函数和析构函数

目录 前言一&#xff0c;构造函数**1.1 什么是构造函数****1.2 构造函数的特性**1.3 总结 二&#xff0c;析构函数**2.1 什么是析构函数****2.2 析构函数的特性****2.3 总结** 前言 如果一个类中什么成员都没有&#xff0c;简称为空类。 空类中真的什么都没有吗&#xff1f;并…

WebGL绘制和变换三角形

1、绘制多个点 构建三维模型的基本单位是三角形。不管三维模型的形状多么复杂&#xff0c;其基本组成部分都是三角形&#xff0c;只不过复杂的模型由更多的三角形构成而已。 gl.vertexAttrib3f()一次只能向顶点着色器传入一个顶点&#xff0c;而绘制三角形、矩形和立方体等&am…