深度学习每周学习总结P3(天气识别)

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

数据链接
提取码:o3ix

目录

    • 0. 总结
    • 1. 数据导入部分
      • 数据导入部分代码详解:
        • a. 数据读取部分
          • a.1 提问:关于这段代码,我想知道为什么split函数中用以分割的是"\\"符号而不是"/"
          • a.2 提问2:可以为我介绍一下pathlib的.parts和.name方法吗
        • b. 用列表推导式加载和显示图像代码的逐行解释:
    • 2. 模型构建部分
    • 3. 设置超参数
    • 4. 训练函数
    • 5. 测试函数
    • 6. 训练过程
    • 7. 模型的保存及调用模型进行预测

0. 总结

数据导入部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,数据类型转换,划定训练集测试集后,再使用torch.utils.data中的DataLoader()加载数据

模型构建部分:有两个部分一个初始化部分(init())列出了网络结构的所有层,比如卷积层池化层等。第二个部分是前向传播部分,定义了数据在各层的处理过程。

设置超参数:在这之前需要定义损失函数,学习率,以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。

定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。函数内部初始化损失准确率为0,接着开始循环,使用DataLoader()获取一个批次的数据,对这个批次的数据带入模型得到预测值,然后使用损失函数计算得到损失值。接下来就是进行反向传播以及使用优化器优化参数,梯度清零放在反向传播之前或者是使用优化器优化之后都是可以的。将 optimizer.zero_grad() 放在了每个批次处理的开始,这是最标准和常见的做法。这样可以确保每次迭代处理一个新批次时,梯度是从零开始累加的。准确率是通过累计预测正确的数量得到的,处理每个批次的数据后都要不断累加正确的个数,最终的准确率是由预测正确的数量除以所有样本得数量得到的。损失值也是类似每次循环都累计损失值,最终的损失值是总的损失值除以训练批次得到的

定义测试函数:函数传入的参数相比训练函数少了优化器,只需传入设置好的DataLoader(),定义好的模型,损失函数。此外除了处理批次数据时无需再设置梯度清零、返向传播以及优化器优化参数,其余部分均和训练函数保持一致。

训练过程:定义训练次数,有几次就使用整个数据集进行几次训练,初始化四个空list分别存储每次训练及测试的准确率及损失。使用model.train()开启训练模式,调用训练函数得到准确率及损失。使用model.eval()将模型设置为评估模式,调用测试函数得到准确率及损失。接着就是将得到的训练及测试的准确率及损失存储到相应list中并合并打印出来,得到每一次整体训练后的准确率及损失。

模型的保存,调取及使用。在PyTorch中,通常使用 torch.save(model.state_dict(), ‘model.pth’) 保存模型的参数,使用 model.load_state_dict(torch.load(‘model.pth’)) 加载参数。

需要改进优化的地方:再保证整体流程没有问题的情况下,继续细化细节研究,比如一些函数的原理及作用,如何提升训练集准确率等问题。

1. 数据导入部分

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms,datasetsimport os,PIL,pathlib,randomdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
# 数据导入部分
data_dir = './data/weather_recognize/weather_photos/'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*')) # 获取左右子文件名称
# classNames = [str(path).split("\\")[3] for path in data_paths] # ['cloudy', 'rain', 'shine', 'sunrise']
classNames = [path.parts[-1] for path in data_paths]
classNames
['cloudy', 'rain', 'shine', 'sunrise']
# 数据展示
import matplotlib.pyplot as plt
from PIL import Image # Pillow 是一个图像处理库,可以用来打开、操作和保存许多不同格式的图像文件。# 指定图像文件夹路径
image_folder = './data/weather_recognize/weather_photos/cloudy/'# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg",".png",".jpeg"))]# 创建Matplotlib图像fig,axes = plt.subplots(3,8,figsize=(16,6))# 使用列表推导式加载和显示图像
for ax,img_file in zip(axes.flat,image_files):img_path = os.path.join(image_folder,img_file)img = Image.open(img_path)ax.imshow(img)ax.axis('off')# 显示图像
plt.tight_layout()
plt.show()


在这里插入图片描述

# 数据格式转换
total_datadir = './data/weather_recognize/weather_photos/'# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = torchvision.transforms.Compose([transforms.Resize([224,224]), # 输入图片resize成统一尺寸transforms.ToTensor(),        # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(         # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。mean = [0.485,0.456,0.406],std = [0.229,0.224,0.225])
])total_data = torchvision.datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 1125Root location: ./data/weather_recognize/weather_photos/StandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
# 划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset,test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset,test_dataset
(<torch.utils.data.dataset.Subset at 0x21120a68460>,<torch.utils.data.dataset.Subset at 0x2115a4ec7f0>)
# 使用dataloader加载数据,并设置好基本的batch_size
batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size = batch_size,shuffle = True,num_workers = 1 # 用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据。 
)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size = batch_size,shuffle = True,num_workers = 1
)
# 查看数据
for X,y in test_dl:print("Shape of X[N,C,H,W]: ",X.shape)print("Shape of y: ",y.shape,y.dtype)break
Shape of X[N,C,H,W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

数据导入部分代码详解:

a. 数据读取部分

●第一步:使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。

●第二步:使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。

●第三步:

通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames中.

或直接使用pathlib的.parts方法

●第四步:打印classeNames列表,显示每个文件所属的类别名称。

a.1 提问:关于这段代码,我想知道为什么split函数中用以分割的是"\“符号而不是”/"

回答:
在这段代码中,split("\\")[3] 被用来从文件路径中提取特定的部分。这里使用反斜杠(\)而不是正斜杠(/)作为分隔符,可能是因为这段代码原本是为在 Windows 系统上运行而编写的。在 Windows 文件系统中,路径通常使用反斜杠 \ 作为分隔符。例如,一个典型的 Windows 文件路径可能看起来像这样:C:\Users\UserName\Documents\File.txt

但是,值得注意的是,Python 的 pathlib 库是跨平台的,并会自动处理不同操作系统中的路径分隔符差异。当使用 pathlib 处理文件路径时,通常不需要手动指定分隔符。事实上,使用 pathlib 的方法(如 .parts.name)通常更为安全和可靠,因为它们可以适应不同的操作系统。

例如,如果目的是获取路径中的某个特定部分(如这里的类名),可以使用 pathlib 提供的属性而不是手动分割字符串。如果 data_paths 中的路径是类似于 ./data/weather_recognize/weather_photos/ClassName/FileName.jpg 的格式,那么可以这样获取类名:

classNames = [path.parts[-2] for path in data_paths]

这样就无需关心是使用 \ 还是 / 作为分隔符,代码会更加健壮,适用于不同的操作系统。

a.2 提问2:可以为我介绍一下pathlib的.parts和.name方法吗

回答2:
当然可以。pathlib 是 Python 的一个标准库,用于面向对象地处理文件系统路径。它提供了多种方法来操作和提取路径信息,其中 .parts.name 是两个非常实用的属性。

.parts

  • .parts 返回一个表示路径各部分的元组。
  • 它将整个路径分解为其组成部分,每个部分由路径中的一个目录或文件名表示。
  • 在不同的操作系统中,路径的分隔符可能不同(例如,在 Windows 中是 \,在 Unix 和 macOS 中是 /),但 .parts 会自动处理这些差异。
  • 示例:
    • 假设有一个路径 Path("/usr/bin/python3").parts 将返回 ('/', 'usr', 'bin', 'python3')
    • 在 Windows 系统上,对于 Path("C:\\Users\\UserName\\Documents\\File.txt").parts 将返回 ('C:\\', 'Users', 'UserName', 'Documents', 'File.txt')

.name

  • .name 返回路径中最后一部分的名称。
  • 对于文件路径,它返回文件名;对于目录路径,它返回目录名。
  • 它不包括路径中的任何父目录部分。
  • 示例:
    • 对于路径 Path("/usr/bin/python3").name 将返回 python3
    • 对于路径 Path("C:\\Users\\UserName\\Documents\\File.txt").name 将返回 File.txt

使用 pathlib 的这些属性可以让路径处理更加直观和安全,尤其是在处理跨平台的路径问题时。

b. 用列表推导式加载和显示图像代码的逐行解释:
  1. for ax, img_file in zip(axes.flat, image_files):

    • 这是一个 for 循环,使用 zip 函数来同时遍历 axes.flat(所有子图对象的扁平化列表)和 image_files(图像文件名列表)。ax 是当前子图的引用,img_file 是当前要处理的图像文件名。
  2. img_path = os.path.join(image_folder, img_file)

    • 使用 os.path.join 构建完整的图像文件路径。这个函数能正确处理不同操作系统中的路径分隔符。
  3. img = Image.open(img_path)

    • 使用 Pillow 的 Image.open 方法打开图像文件。
  4. ax.imshow(img)

    • 在当前的子图(ax)上显示图像 img
  5. ax.axis('off')

    • 关闭当前子图的坐标轴,这样图像就不会显示任何坐标轴标签或刻度。
  6. plt.tight_layout()

    • 调整子图的布局,使得图像之间没有太大的间隙,并确保子图的标题和轴标签不会重叠。
  7. plt.show()

    • 显示最终的图像。这通常会弹出一个窗口显示所有的图像。

2. 模型构建部分

3, 224, 224(输入数据)

-> 12, 220, 220(经过卷积层1)

-> 12, 216, 216(经过卷积层2)-> 12, 108, 108(经过池化层1)

-> 24, 104, 104(经过卷积层3)

-> 24, 100, 100(经过卷积层4)-> 24, 50, 50(经过池化层2)

-> 60000 -> num_classes(4)

# 模型构建
import torch.nn.functional as Fclass Network_bn(nn.Module):def __init__(self):super(Network_bn,self).__init__()self.conv1 = nn.Conv2d(in_channels = 3,out_channels = 12,kernel_size = 5,stride = 1,padding = 0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels = 12,out_channels = 12,kernel_size = 5,stride = 1,padding = 0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,2)self.conv3 = nn.Conv2d(in_channels = 12,out_channels = 24,kernel_size = 5,stride = 1,padding = 0)self.bn3 = nn.BatchNorm2d(24)self.conv4 = nn.Conv2d(in_channels = 24,out_channels = 24,kernel_size = 5,stride = 1,padding = 0)self.bn4 = nn.BatchNorm2d(24)self.dropout = nn.Dropout(p=0.5)     # 尝试在全连接层之前加入dropout,减少过拟合self.fc1 = nn.Linear(24*50*50,len(classNames)) # 尝试加入多个全连接层提升模型性能# self.fc2 = nn.Linear(30000,15000)             # 尝试加入多个全连接层提升模型性能# self.fc3 = nn.Linear(30000,len(classNames))   # 尝试加入多个全连接层提升模型性能def forward(self,x):x = F.relu(self.bn1(self.conv1(x)))x = F.relu(self.bn2(self.conv2(x)))x = self.pool(x)x = F.relu(self.bn3(self.conv3(x)))x = F.relu(self.bn4(self.conv4(x)))x = self.pool(x)x = x.view(-1,24*50*50)# x = self.dropout(x)    x = F.relu(self.fc1(x)) # 在全连接层之间添加激活函数# x = self.dropout(x)     # 尝试将dropout层放置在两个全连接层之间# x = F.relu(self.fc2(x)) # 在全连接层之间添加激活函数# x = F.relu(self.fc3(x)) # 在全连接层之间添加激活函数return xprint("Using {} device".format(device))model = Network_bn().to(device)
model
Using cuda deviceNetwork_bn((conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv3): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))(bn3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv4): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(dropout): Dropout(p=0.5, inplace=False)(fc1): Linear(in_features=60000, out_features=4, bias=True)
)

计算公式:

卷积维度计算公式:

  • 高度方向:$ H_{out} = \frac{\left(H_{in} - Kernel_size + 2\times padding\right)}{stride} + 1 $

  • 宽度方向:$ W_{out} = \frac{\left(W_{in} - Kernel_size + 2\times padding\right)}{stride} + 1 $

  • 卷积层通道数变化:数据通道数为卷积层该卷积层定义的输出通道数,例如:self.conv1 = nn.Conv2d(3,64,kernel_size = 3)。在这个例子中,输出的通道数为64,这意味着卷积层使用了64个不同的卷积核,每个核都在输入数据上独立进行卷积运算,产生一个新的通道。需要注意,卷积操作不是在单独的通道上进行的,而是跨所有输入通道(本例中为3个通道)进行的,每个卷积核提供一个新的输出通道。

池化层计算公式:

  • 高度方向: H o u t = ( H i n + 2 × p a d d i n g H − d i l a t i o n H × ( k e r n e l _ s i z e H − 1 ) − 1 s t r i d e H + 1 ) H_{out} = \left(\frac{H_{in} + 2 \times padding_H - dilation_H \times (kernel\_size_H - 1) - 1}{stride_H} + 1 \right) Hout=(strideHHin+2×paddingHdilationH×(kernel_sizeH1)1+1)

  • 宽度方向: W o u t = ( W i n + 2 × p a d d i n g W − d i l a t i o n W × ( k e r n e l _ s i z e W − 1 ) − 1 s t r i d e W + 1 ) W_{out} = \left( \frac{W_{in} + 2 \times padding_W - dilation_W \times (kernel\_size_W - 1) - 1}{stride_W} + 1 \right) Wout=(strideWWin+2×paddingWdilationW×(kernel_sizeW1)1+1)

其中:

  • H i n H_{in} Hin W i n W_{in} Win 是输入的高度和宽度。
  • p a d d i n g H padding_H paddingH p a d d i n g W padding_W paddingW 是在高度和宽度方向上的填充量。
  • k e r n e l _ s i z e H kernel\_size_H kernel_sizeH k e r n e l _ s i z e W kernel\_size_W kernel_sizeW 是卷积核或池化核在高度和宽度方向上的大小。
  • s t r i d e H stride_H strideH s t r i d e W stride_W strideW 是在高度和宽度方向上的步长。
  • d i l a t i o n H dilation_H dilationH d i l a t i o n W dilation_W dilationW 是在高度和宽度方向上的膨胀系数。

请注意,这里的膨胀系数 $dilation \times (kernel_size - 1) $实际上表示核在膨胀后覆盖的区域大小。例如,一个 $3 \times 3 $ 的核,如果膨胀系数为2,则实际上它覆盖的区域大小为$ 5 \times 5 $(原始核大小加上膨胀引入的间隔)。

计算流程:

输入数据:( 3 ∗ 224 ∗ 224 3*224*224 3224224)

conv1计算:卷积核数12,输出的通道也为12。-> ( 12 ∗ 220 ∗ 220 ) (12*220*220) (12220220)
输出维度 = ( 224 − 5 + 2 × 0 ) 1 + 1 = 220 \text{输出维度} = \frac{\left(224 - 5 + 2 \times 0\right)}{1} + 1 = 220 输出维度=1(2245+2×0)+1=220

conv2计算:-> ( 12 ∗ 216 ∗ 216 ) (12*216*216) (12216216)
输出维度 = ( 220 − 5 + 2 × 0 ) 1 + 1 = 216 \text{输出维度} = \frac{\left(220 - 5 + 2 \times 0\right)}{1} + 1 = 216 输出维度=1(2205+2×0)+1=216

pool1计算:通道数不变,步长为2-> ( 12 ∗ 108 ∗ 108 ) (12*108*108) (12108108)
输出维度 = ( 216 + 2 × 0 − 1 × ( 2 − 1 ) − 1 2 + 1 ) = 107 + 1 = 108 \text{输出维度} = \left(\frac{216 + 2 \times 0 - 1 \times \left(2 - 1\right) - 1}{2} + 1 \right) = 107 +1 = 108 输出维度=(2216+2×01×(21)1+1)=107+1=108

conv3计算:-> ( 24 ∗ 104 ∗ 104 ) (24*104*104) (24104104)
输出维度 = ( 108 − 5 + 2 × 0 ) 1 + 1 = 104 \text{输出维度} = \frac{\left(108 - 5 + 2 \times 0\right)}{1} + 1 = 104 输出维度=1(1085+2×0)+1=104

conv4计算:-> ( 24 ∗ 100 ∗ 100 ) (24*100*100) (24100100)
输出维度 = ( 104 − 5 + 2 × 0 ) 1 + 1 = 100 \text{输出维度} = \frac{\left(104 - 5 + 2 \times 0\right)}{1} + 1 = 100 输出维度=1(1045+2×0)+1=100

pool2计算:-> ( 24 ∗ 50 ∗ 50 ) (24*50*50) (245050)
输出维度 = ( 100 + 2 × 0 − 1 × ( 2 − 1 ) − 1 2 + 1 ) = 49 + 1 = 50 \text{输出维度} = \left(\frac{100 + 2 \times 0 - 1 \times \left(2 - 1\right) - 1}{2} + 1 \right) = 49 +1 = 50 输出维度=(2100+2×01×(21)1+1)=49+1=50

flatten层:-> 60000 60000 60000

n u m _ c l a s s e s ( 4 ) num\_classes(4) num_classes(4)

3. 设置超参数

loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
# opt = torch.optim.Adam(model.parameters(),lr=learn_rate)

4. 训练函数

# 训练循环
def train(dataloader,model,loss_fn,optimizer):size = len(dataloader.dataset)num_batches = len(dataloader)train_loss,train_acc = 0,0for X,y in dataloader:X,y = X.to(device),y.to(device)# 计算预测值pred = model(X)loss = loss_fn(pred,y)# 反向传播optimizer.zero_grad()loss.backward()optimizer.step()# 记录acc与losstrain_acc += (pred.argmax(1)==y).type(torch.float).sum().item()train_loss += loss.item()train_loss /= num_batchestrain_acc /= sizereturn train_acc,train_loss

5. 测试函数

# 测试函数
def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc,test_loss = 0,0# 当不进行梯度训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for X,y in dataloader:X,y = X.to(device),y.to(device)# 计算预测值pred = model(X)loss = loss_fn(pred,y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc,test_loss

6. 训练过程

epochs = 20train_loss = []
train_acc = []
test_loss = []
test_acc = []for epoch in range(epochs):model.train()epoch_train_acc,epoch_train_loss = train(train_dl,model,loss_fn,opt)model.eval()epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1,epoch_train_acc*100,epoch_train_loss,epoch_test_acc*100,epoch_test_loss))print('Done!')
Epoch: 1,Train_acc:46.1%,Train_loss:1.207,Test_acc:46.2%,Test_loss:1.274
Epoch: 2,Train_acc:74.1%,Train_loss:0.822,Test_acc:72.9%,Test_loss:0.654
Epoch: 3,Train_acc:82.0%,Train_loss:0.614,Test_acc:80.9%,Test_loss:0.654
Epoch: 4,Train_acc:84.4%,Train_loss:0.507,Test_acc:78.2%,Test_loss:0.591
Epoch: 5,Train_acc:87.2%,Train_loss:0.465,Test_acc:79.6%,Test_loss:0.589
Epoch: 6,Train_acc:86.6%,Train_loss:0.408,Test_acc:84.0%,Test_loss:0.400
Epoch: 7,Train_acc:88.7%,Train_loss:0.375,Test_acc:83.1%,Test_loss:0.411
Epoch: 8,Train_acc:89.0%,Train_loss:0.341,Test_acc:84.9%,Test_loss:0.355
Epoch: 9,Train_acc:89.9%,Train_loss:0.319,Test_acc:85.3%,Test_loss:0.337
Epoch:10,Train_acc:90.9%,Train_loss:0.296,Test_acc:85.8%,Test_loss:0.353
Epoch:11,Train_acc:92.3%,Train_loss:0.268,Test_acc:85.8%,Test_loss:0.332
Epoch:12,Train_acc:91.2%,Train_loss:0.271,Test_acc:87.6%,Test_loss:0.309
Epoch:13,Train_acc:91.4%,Train_loss:0.273,Test_acc:86.7%,Test_loss:0.324
Epoch:14,Train_acc:92.2%,Train_loss:0.265,Test_acc:87.1%,Test_loss:0.344
Epoch:15,Train_acc:93.0%,Train_loss:0.229,Test_acc:89.3%,Test_loss:0.292
Epoch:16,Train_acc:93.7%,Train_loss:0.276,Test_acc:88.4%,Test_loss:0.424
Epoch:17,Train_acc:93.4%,Train_loss:0.230,Test_acc:89.8%,Test_loss:0.431
Epoch:18,Train_acc:94.2%,Train_loss:0.213,Test_acc:89.8%,Test_loss:0.382
Epoch:19,Train_acc:93.0%,Train_loss:0.231,Test_acc:88.4%,Test_loss:0.314
Epoch:20,Train_acc:93.7%,Train_loss:0.220,Test_acc:90.7%,Test_loss:0.303
Done!
# 结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

7. 模型的保存及调用模型进行预测

# 1.保存模型# torch.save(model, 'model.pth') # 保存整个模型
torch.save(model.state_dict(), 'model_state_dict.pth') # 仅保存状态字典# 2. 加载模型 or 新建模型加载状态字典# model2 = torch.load('model.pth') 
# model2 = model2.to(device) # 理论上在哪里保存模型,加载模型也会优先在哪里,但是指定一下确保不会出错model2 = Network_bn().to(device) # 重新定义模型
model2.load_state_dict(torch.load('model_state_dict.pth')) # 加载状态字典到模型# 3.图片预处理
from PIL import Image
import torchvision.transforms as transforms# 输入图片预处理
def preprocess_image(image_path):image = Image.open(image_path)transform = transforms.Compose([transforms.Resize((224, 224)),  # 假设使用的是224x224的输入transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])image = transform(image).unsqueeze(0)  # 增加一个批次维度return image# 4.预测函数(指定路径)
def predict(image_path, model):model.eval()  # 将模型设置为评估模式with torch.no_grad():  # 关闭梯度计算image = preprocess_image(image_path)image = image.to(device)  # 确保图片在正确的设备上outputs = model(image)_, predicted = torch.max(outputs, 1)  # 获取最可能的预测类别return predicted.item()# 5.预测并输出结果
image_path = "./data/weather_recognize/weather_photos/shine/shine22.jpg"  # 替换为你的图片路径
prediction = predict(image_path, model)
class_names = ["cloudy", "rain", "shine", "sunrise"]  # Replace with your class labels
predicted_label = class_names[prediction]
print("Predicted class:", predicted_label)
Predicted class: shine
# 选取dataloader中的一个图像进行判断
import numpy as np
# 选取图像
imgs,labels = next(iter(train_dl))
image,label = imgs[0],labels[0]# 选取指定图像并展示
# 调整维度为 [224, 224, 3]
image_to_show = image.numpy().transpose((1, 2, 0))# 归一化
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image_to_show = std * image_to_show + mean
image_to_show = np.clip(image_to_show, 0, 1)# 显示图像
plt.imshow(image_to_show)
plt.show()# 将图像转移到模型所在的设备上(如果使用GPU)
image = image.to(device)# 预测
with torch.no_grad():output = model(image.unsqueeze(0))  # 添加批次维度# 输出预测结果
_, predicted = torch.max(output, 1)
class_names = ["cloudy", "rain", "shine", "sunrise"]  # Replace with your class labels
predicted_label = class_names[predicted]
print(f"Predicted: {predicted.item()}, Actual: {label.item()}")

在这里插入图片描述

Predicted: 2, Actual: 2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2905527.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【Hello,PyQt】控件拖拽

在 PyQt 中实现控件拖拽功能的详细介绍 拖拽功能是现代用户界面设计中常见的交互方式之一&#xff0c;它可以提高用户体验&#xff0c;增加操作的直观性。在 PyQt 中&#xff0c;我们可以很容易地实现控件之间的拖拽功能。本文将介绍如何在 PyQt 中实现控件的拖拽功能。 如何实…

达梦数据库新手上路排坑

数据库安装 这个没啥说的&#xff0c;按照官网教程操作&#xff0c;我使用的是docker进行安装 下载文件docker文件 官方下载地址- load -i dm8****.tar (注意修改为当前下载的文件)达梦官方文档注意修改为当前版本 docker run -d -p 5236:5236 --name dm8 --privilegedtrue -…

第十届蓝桥杯大赛个人赛省赛(软件类)真题- CC++ 研究生组-最短路

6 肉眼观察&#xff0c; 看起来短的几条路对比下来是6~ #include <iostream> using namespace std; int main() {printf("6");return 0; }

<el-table>设置一列为固定字段,其他列为循环生成

<el-table :data"tableData" style"width: 100%"><el-table-columnprop"name"label"固定字段名":formatter"formatter"></el-table-column><el-table-columnv-for"(item, index) in wordsColumns…

四川易点慧电子商务抖音小店:前景无忧,创新引领未来零售风潮

在数字经济高速发展的今天&#xff0c;电子商务已成为推动经济增长的重要引擎。四川易点慧电子商务有限公司紧跟时代步伐&#xff0c;积极布局抖音小店&#xff0c;展现出强劲的发展势头和广阔的前景。 抖音小店作为抖音平台上的重要商业生态&#xff0c;凭借其庞大的用户群体和…

安卓调试桥ADB

Logcat 命令行工具 | Android Studio | Android Developers 什么是ADB ADB 全称为 Android Debug Bridge &#xff0c;是 Android SDK &#xff08;安卓的开发工具&#xff09;中的一个工具&#xff0c;起到调试桥的作用&#xff0c;是一个 客户端 - 服务器端程序 。其中 …

[SpringCloud] Feign Client 的创建 (二) (五)

文章目录 1.自动配置FeignAutoConfiguration2.生成 Feign Client2.1 从Feign Client子容器获取组件2.2 Feign Client子容器的创建2.3 构建Feign Client实例 1.自动配置FeignAutoConfiguration spring-cloud-starter-openfeign 包含了 spring-cloud-openfeign-core FeignAutoCo…

【计算机网络篇】数据链路层(4.2)可靠传输的实现机制

文章目录 &#x1f354;可靠传输的实现机制⭐停止 - 等待协议&#x1f5d2;️注意 &#x1f50e;停止 - 等待协议的信道利用率&#x1f5c3;️练习题 ⭐回退N帧协议&#x1f388;回退N帧协议的基本工作流程&#x1f50e;无传输差错的情况&#x1f50e;超时重传的情况&#x1f5…

【IC前端虚拟项目】write_path子模块DS与RTL编码

【IC前端虚拟项目】数据搬运指令处理模块前端实现虚拟项目说明-CSDN博客 read_path的代码完成之后,就可以开始整个项目里复杂度最高、bug最多、时序收敛最为困难的模块——write_path的开发了!我自己写过两次这个虚拟项目,每次都是在这里耗时最久,所以大家也可以挑战一下自…

容器三(ArrayList、LinkedList、Vector)

目录 ArrayList 特点和底层实现 LinkedList 特点和底层实现 Vector 向量 ArrayList 特点和底层实现 ArrayList 底层是用数组实现的存储。 特点&#xff1a;查询效率高&#xff0c;增删效率低&#xff0c;线程不安全。 在 List 的多个实现类中&#xff0c;我们一般使用它来处理…

【机器学习】数据探索(Data Exploration)---数据质量和数据特征分析

一、引言 在机器学习项目中&#xff0c;数据探索是至关重要的一步。它不仅是模型构建的基础&#xff0c;还是确保模型性能稳定、预测准确的关键。数据探索的过程中&#xff0c;数据质量和数据特征分析占据了核心地位。数据质量直接关系到模型能否从数据中提取有效信息&#xff…

【公示】2023年度青岛市级科技企业孵化器拟认定名单

根据《青岛市科技企业孵化器管理办法》&#xff08;青科规〔2023〕1号&#xff09;&#xff08;以下简称《管理办法》&#xff09;、《关于开展2023年度市级科技企业孵化器认定申报工作的通知》&#xff0c;经申报受理、区市推荐、形式审查、专家评审及现场核查等程序&#xff…

leetcode热题100.柱状图中最大的矩形

Problem: 84. 柱状图中最大的矩形 文章目录 题目思路复杂度Code 题目 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。 求在该柱状图中&#xff0c;能够勾勒出来的矩形的最大面积。 示例 1: 输入&#xff1a;hei…

牛客小白月赛89(A,B,C,D,E,F)

比赛链接 官方视频讲解&#xff08;个人觉得讲的还是不错的&#xff09; 这把BC偏难&#xff0c;差点就不想做了&#xff0c;对小白杀伤力比较大。后面的题还算正常点。 A 伊甸之花 思路&#xff1a; 发现如果这个序列中最大值不为 k k k&#xff0c;我们可以把序列所有数…

【QT学习】2.信号与槽,标准信号与槽,自建信号,自建槽

1.主函数的进一步解释 2.信号与槽的简单例子 connect(&but1, //发送者&QPushButton::pressed, //发送触发事件this, //接受者&MainWindow::close); //接受数据后处理操作 connect&#xff08;&#xff09; 参数1&#xf…

unity学习(76)--窗口化和后台运行

1.通过如下方式将编译的游戏设置为窗口模式。 成功&#xff1a; 2.现在只有鼠标点击的窗体游戏运动&#xff0c;其他窗体游戏都会卡住。 2.1build setting中 2.2unity内部Project Settings 也被同步修改了

深度学习故障诊断实战 | 数据预处理之创建Dataloader数据集

前言 本期给大家分享介绍如何用Dataloader创建数据集 背景 示例代码 from torch import nn import torch import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import time import torch.functional as F from sklearn.manifold import TSNE…

【漏洞复现】大华综合安防监控管理平台 Digital Surveillance System系统存在RCE漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

《亮数据:爬虫数据采集行业痛点的利器》

❤️作者主页&#xff1a;小虚竹 ❤️作者简介&#xff1a;大家好,我是小虚竹。2022年度博客之星评选TOP 10&#x1f3c6;&#xff0c;Java领域优质创作者&#x1f3c6;&#xff0c;CSDN博客专家&#x1f3c6;&#xff0c;华为云享专家&#x1f3c6;&#xff0c;掘金年度人气作…

npm救赎之道:探索--save与--save--dev的神秘力量!

目录 1. --save和--save-dev是什么&#xff1f;2. 区别与应用场景--save--save-dev 3. 生产环境与开发环境4. 实际应用示例--save--save-dev 5. 总结 在现代软件开发中&#xff0c;npm&#xff08;Node Package Manager&#xff09;扮演着不可或缺的角色&#xff0c;为开发者提…