后端之卡尔曼滤波

后端之卡尔曼滤波

前言

在很久之前,人们刚结束信息传递只能靠信件的时代,通信技术蓬勃发展,无线通信和有线通信走进家家户户,而著名的贝尔实验室就在这个过程做了很多影响深远的研究。为了满足不同电路和系统对信号的需求,比如去除噪声,或者区分不同频率的信号,滤波器就诞生了,而贝尔实验室就是这一领域研究的先行者。早期的滤波器是电子滤波器,是由电阻,电感,电容等电子元件组成的物理电路,其电路图大概长这样:
在这里插入图片描述
这个是由一个电容和一个电阻组成的RC滤波器。而装在实际家电或者设备中的滤波器大概如下图,这个是一个包含高通和低通滤波器的信号分离装置。在这里插入图片描述
随着技术的发展(主要是计算机的兴起),相比于处理原始模拟信号,人们更愿意处理数字信号,这可以带来更高的处理速度,更低的成本和更高的精度,于是,数字滤波器诞生了。数字滤波器是对数字信号进行滤波处理以得到期望的响应特性的离散时间系统。这时候数字模拟器还是依靠基本的一些电路元件比如寄存器,延时器,加法器等,但其工作的领域已变为经过数模转换器转化后的数字信号域了,后面广泛用于收音机,蜂窝电话等设备中。

数字滤波器早期主要处理信号,而信号都是一些波形,这也是滤波的由来。后面随着人们对滤波器的扩展,出现了另外一种形式的数字滤波器,其工作过程包含状态空间模型,称为状态空间滤波器,状态空间滤波器的一个典型例子是Rudolf Kalman在1960年提出的卡尔曼滤波器。这时候虽然没有了波,主要是空间状态,但按传统,这个名称还是保留了下来。
最后,随着计算机的发展,中央处理器(CPU)集成了各种计算单元,所有计算任务都可以交给它,数字滤波器就不用单独保留如寄存器,加法器等元件了,在保留了算法原理和流程之后羽化成仙,成为了滤波算法。

卡尔曼滤波算法推导简明版

发明了卡尔曼滤波算法的人,叫做鲁道夫·埃米尔·卡尔曼,是一个匈牙利人。
卡尔曼滤波是基于马尔科夫假设的,即下一时刻状态只与上一时刻有关。其主要针对于线性高斯系统,计算的流程如下:
假设状态 X \mathbf{X} X的转移方程为:

其中 F k \mathbf{F}_{k} Fk为状态转移矩阵,而 P k \mathbf{P}_{k} Pk X k \mathbf{X}_{k} Xk的方差
X \mathbf{X} X只表示自身的状态,另外一些系统还会有外部控制因数,比如火车减速时,速度是状态量,但可以有刹车装置进行减速,如果系统存在这部分控制因数,需要把这部分加到状态转移中:

x ^ k = F k x ^ k − 1 + B u k P k = F k P k − 1 F k T \begin{aligned} \hat{\mathbf{x}}_{k} & =\mathbf{F}_{k} \hat{\mathbf{x}}_{k-1} +Bu_k\\ \mathbf{P}_{k} & =\mathbf{F}_{\mathbf{k}} \mathbf{P}_{k-1} \mathbf{F}_{k}^{T} \end{aligned} x^kPk=Fkx^k1+Buk=FkPk1FkT

另外, X \mathbf{X} X中包含环境的一些未知变量,我们假设为噪声,同时噪声分布假设服从高斯分布,于是有如下方程:

x ^ k = F k x ^ k − 1 + B u k + w k P k = F k P k − 1 F k T + R \begin{aligned} \hat{\mathbf{x}}_{k} & =\mathbf{F}_{k} \hat{\mathbf{x}}_{k-1} +Bu_k +w_k\\ \mathbf{P}_{k} & =\mathbf{F}_{\mathbf{k}} \mathbf{P}_{k-1} \mathbf{F}_{k}^{T} +R \end{aligned} x^kPk=Fkx^k1+Buk+wk=FkPk1FkT+R

卡尔曼滤波中,还需要使用观测方程来更新,一般观测方程是需要从状态变为观测量的,即需要有一个观测量到状态的转换,但很多时候这个转换方程都没有,但这并不影响我们假设,如果没有转换方程,到时候直接把转换矩阵设为单位矩阵就行,那现在假设观测方程为:

z k = H ∗ x k + v k z_k = H*x_k+v_k zk=Hxk+vk

其中 H H H为观测方程, v k v_k vk为观测的噪声分布,假设其服从 v k ∼ N ( 0 , Q ) v_k\sim N\left(0,Q\right) vkN(0,Q),即零均值,方差为Q的高斯分布:

到这里,需要说明一点,上一次滤波的结果,会作为下一次滤波的初始值,即由上一次后验概率,通过状态转移矩阵与控制向量,变为目前的先验值,所以原来的观测方程需要变为:

x ^ k ˉ = F k x ^ k − 1 + B u k + w k P k ˉ = F k P k − 1 F k T + R \begin{aligned} \hat{\mathbf{x}}_{\bar{k}} & =\mathbf{F}_{k} \hat{\mathbf{x}}_{k-1} +Bu_k +w_k\\ \mathbf{P}_{\bar{k}} & =\mathbf{F}_{\mathbf{k}} \mathbf{P}_{k-1} \mathbf{F}_{k}^{T} +R \end{aligned} x^kˉPkˉ=Fkx^k1+Buk+wk=FkPk1FkT+R

其中下标不带横杠的,表示后验值,带横杠的,代表先验值,这样就由上一时刻的最优估计,得到了当前预测的先验状态及先验方差。
对于观测方程,其方差主要由观测方差决定,即:

P z k = R P_{z_k} = R Pzk=R

zk的均值为Hxk,即zk服从N(Hxk,R)的分布。

这两个分布都是高斯分布,一个是状态的先验分布,一个是传感器测量的分布,这个测量与xk的状态也有关,现在要求这两个分布的联合分布,并求其最大值,很简单,把两个分布乘起来,由于高斯分布的乘积,还是高斯分布,取其均值处,就是概率最大的状态。

在这里插入图片描述
乘积的部分,就是所说的状态更新,首先由高斯分布的公式可得:
N ( x , μ , σ ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 \mathcal{N}(x, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} N(x,μ,σ)=σ2π 1e2σ2(xμ)2

在这里插入图片描述

那么两个分布相乘,系数结果为:

在这里插入图片描述

其中均值u就是概率最大时的值,σ就是方差,其中这个式子就是最后我们要求的,但这个式子有点复杂,于是用一个系数化简为:

在这里插入图片描述

其中k称为卡尔曼增益,u0为预测值,u1为观测。可以看到,k为0到1之间的数,分子为预测的方差,如果预测方差越大,则越向观测值靠拢,如果预测方差越小,则越向预测值靠拢。

截至目前,我们有用矩阵 ( μ 0 , Σ 0 ) = ( H k x ^ k , H k P k H k T ) \left(\mu_0, \Sigma_0\right)=\left(H_k \hat{x}_k, H_k P_k H_k^T\right) (μ0,Σ0)=(Hkx^k,HkPkHkT)预测的分布,有用传感器读数 ( μ 1 , Σ 1 ) = ( z ⃗ k , R k ) \left(\mu_1, \Sigma_1\right)=\left(\vec{z}_k, R_k\right) (μ1,Σ1)=(z k,Rk)预测的分布。把它们代入上节的矩阵等式中:
在这里插入图片描述

相应的,卡尔曼增益就是:
在这里插入图片描述

两个式子左边都有不少Hk矩阵,同时把这个矩阵去掉,则K变为:

在这里插入图片描述

于是,我们得到最后卡尔曼更新的公式:

K k = P k − H T H P k − H T + R x ^ k = x ^ k ˉ + K k ( z k − H x ^ k ˉ ) P k = ( I − K k H ) P k ˉ \begin{array}{c} K_{k}=\frac{P_{k}^{-} H^{T}}{H P_{k}^{-} H^{T}+R} \\ \hat{x}_{k}=\hat{x}_{\bar{k}}+K_{k}\left(z_{k}-H \hat{x}_{\bar{k}}\right) \\ P_{k}=\left(I-K_{k} H\right) P_{\bar{k}} \end{array} Kk=HPkHT+RPkHTx^k=x^kˉ+Kk(zkHx^kˉ)Pk=(IKkH)Pkˉ

其中计算K的都是使用先验方差,R为传感器方差。
Zk为实际观测值,Hxk为预测的观测值。
最后使用K及先验方差,得到后验方差及后验均值。

参考链接:

https://zhuanlan.zhihu.com/p/39912633
https://www.guyuehome.com/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2904728.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

每日一练:LeeCode-48、旋转图像【二维数组+行列交换】

给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1: 输入:matrix [[1,2,3],[4,5,6],[7,8,9]] 输出…

6、鸿蒙学习-Stage模型应用程序包结构

基于Stage模型开发的应用,经编译打包后,其应用程序的结构如下图应用程序包结构(Stage模型)所示。开发者需要熟悉应用程序包结构相关的基本概念。 一、在开发态,一个应用包含一个或者多个Module,可以在DevE…

vscode安装vue3+elment-plus

1.用vscode打开打算创建项目的目录 2.命令行中运行以下命令 npm create vuelatest3.设置好项目名称 4.执行以下命令 cd <your-project-name>5.执行以下命令 cnpm install6.执行以下命令安装elment-plus cnpm install element-plus --save7.执行以下命令 npm run dev…

怎样去保证 Redis 缓存与数据库双写一致性?

解决方案 那么我们这里列出来所有策略&#xff0c;并且讨论他们优劣性。 先更新数据库&#xff0c;后更新缓存先更新数据库&#xff0c;后删除缓存先更新缓存&#xff0c;后更新数据库先删除缓存&#xff0c;后更新数据库 先更新数据库&#xff0c;后更新缓存 这种方法是不推…

【明道云】如何让用户可以新增但不能修改记录

【背景】 遇到一个需求场景&#xff0c;用户希望新增数据后锁住数据不让更改。 【分析】 在设计表单时直接将字段设置只读是不行的。字段设置只读将会直接让界面上此字段的前端组件不可编辑。包括新增时也无法填入。显然是不符合需求的。 需要既能新增&#xff0c;新增后又不…

macOS 13 Ventura (苹果最新系统) v13.6.6正式版

macOS 13 Ventura是苹果电脑的全新操作系统&#xff0c;它为用户带来了众多引人注目的新功能和改进。该系统加强了FaceTime和视频通话的体验&#xff0c;同时优化了邮件、Safari浏览器和日历等内置应用程序&#xff0c;使其更加流畅、快速和安全。特别值得一提的是&#xff0c;…

eclipse自动跳到console 解决办法

eclipse启动服务后&#xff0c;想看一些properties信息或者别的&#xff0c;但老是自动跳转到console页面&#xff0c;下面是解决办法&#xff1a; Eclipse中按照如下顺序找到设置菜单的位置&#xff1a; Window — Preferences — Run/Debug — Console 找到以下两项&#xf…

Ubuntu18.04安装RYU

安装RYU 环境&#xff1a;Ubuntu18.04 1.先安装一些插件 apt-get install python-eventlet python-routes python-webob python-paramiko2.安装RYU&#xff0c;使用下载源文件安装 git clone https://github.com/osrg/ryu.gitcd ryu git tag进入RYU查看下载的版本有哪些。在…

用 AI 编程-释放ChatGPT的力量

最近读了本书&#xff0c;是 Sean A Williams 写的&#xff0c;感觉上还是相当不错的。一本薄薄的英文书&#xff0c;还真是写的相当好。如果你想看&#xff0c;还找不到&#xff0c;可以考虑私信我吧。 ChatGPT for Coders Unlock the Power of AI with ChatGPT: A Comprehens…

小美的平衡矩阵(前缀和例题)

2024美团秋招&#xff0c;被这一题给难住了 美团校招笔试真题_Java工程师、C工程师_牛客网 题目&#xff1a; 解答&#xff1a; 这道题的关键点就是要计算出以某一点为矩阵右下角时&#xff0c;1的个数 我一开始是想着遍历&#xff0c;以某一点为起点&#xff08;矩阵左上角&a…

内存泄露排查流程

一、创建内存泄露案例 package com.mxl.controller;import lombok.Data; import lombok.extern.slf4j.Slf4j; import org.springframework.util.StringUtils; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.Re…

使用Kaggle API快速下载Kaggle数据集

前言 在使用Kaggle网站下载数据集时&#xff0c;直接在网页上点击下载可能会很慢&#xff0c;甚至会出现下载失败的情况。本文将介绍如何使用Kaggle API快速下载数据集。 具体步骤 安装Kaggle API包 在终端中输入以下命令来安装Kaggle API相关的包&#xff1a; pip install…

如何利用webpack来优化前端性能

当涉及前端性能优化时&#xff0c;Webpack 是一款不可或缺的工具。它不仅仅是一个模块打包工具&#xff0c;还提供了各种功能和插件&#xff0c;可以帮助开发人员优化前端应用程序的性能。在这篇文章中&#xff0c;我们将深入探讨如何有效地利用 Webpack 来优化前端性能&#x…

解决:PytorchStreamWriter failed writing file data

文章目录 问题内容问题分析解决思路 问题内容 今天在炼丹的时候&#xff0c;我发现模型跑到140步的时候保存权重突然报了个问题&#xff0c;详细内容如下&#xff1a; Traceback (most recent call last):File "/public/home/dyedd/.conda/envs/diffusers/lib/python3.8…

STM32 字符数组结束符 “\0”

STM32 字符数组结束符 “\0” 使用字符数组使用printf&#xff0c;string参考 使用字符数组 使用STM32的串口发送数据&#xff0c;核心代码如下&#xff1a; char str[] "hello world!\n\r";while(1) {HAL_UART_Transmit(&huart2, str, sizeof (str), 10);HAL…

土壤有机质空间分布数据

土壤有机质&#xff08;soil organic matter&#xff09;是土壤中含碳有机化合物的总称&#xff0c;包括土壤固有的和外部加入的所有动植物残体及其分解产物和合成产物。主要来源于动植物及微生物残体&#xff0c;可分为腐殖质和非腐殖物质。一般占土壤固相总重的10%以下&#…

新网站收录时间是多久,新建网站多久被百度收录

对于新建的网站而言&#xff0c;被搜索引擎收录是非常重要的一步&#xff0c;它标志着网站的正式上线和对外开放。然而&#xff0c;新网站被搜索引擎收录需要一定的时间&#xff0c;而且时间长短受多种因素影响。本文将探讨新网站收录需要多长时间&#xff0c;以及新建网站多久…

Day53:WEB攻防-XSS跨站SVGPDFFlashMXSSUXSS配合上传文件添加脚本

目录 MXSS UXSS&#xff1a;Universal Cross-Site Scripting HTML&SVG&PDF&SWF-XSS&上传&反编译(有几率碰到) SVG-XSS PDF-XSS Python生成XSS Flash-XSS 知识点&#xff1a; 1、XSS跨站-MXSS&UXSS 2、XSS跨站-SVG制作&配合上传 3、XSS跨站-…

如何在 Oracle 中使用 CREATE SEQUENCE 语句

在本文中&#xff0c;我们将讨论 Oracle CREATE SEQUENCE 语句&#xff0c;其主要目的是提供一种可靠的方法来生成唯一且连续的数值&#xff0c;通常用于数据库表中的主键字段。此功能对于维护数据完整性和效率、确保不同记录之间的标识符有序分配尤其重要。从本质上讲&#xf…

uniApp使用XR-Frame创建3D场景(5)材质贴图的运用

上一篇讲解了如何在uniApp中创建xr-frame子组件并创建简单的3D场景。 这篇我们讲解在xr-frame中如何给几何体赋予贴图材质。 先看源码 <xr-scene render-system"alpha:true" bind:ready"handleReady"><xr-node><xr-assets><xr-asse…