YOLOv9改进策略:注意力机制 | 用于微小目标检测的上下文增强和特征细化网络ContextAggregation,助力小目标检测,暴力涨点

         💡💡💡本文改进内容:用于微小目标检测的上下文增强和特征细化网络ContextAggregation,助力小目标检测

yolov9-c-ContextAggregation summary: 971 layers, 51002153 parameters, 51002121 gradients, 238.9 GFLOPs

 改进结构图如下:

YOLOv9魔术师专栏

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨

🚀🚀🚀 本项目持续更新 | 更新完结保底≥50+ ,冲刺100+🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等

 YOLOv9魔术师

💡💡💡全网独家首发创新(原创),适合paper !!!

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

 1.YOLOv9原理介绍

论文: 2402.13616.pdf (arxiv.org)

代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。

 YOLOv9框架图

1.1 YOLOv9框架介绍

YOLOv9各个模型介绍

2.Context Aggregation介绍 

论文:https://arxiv.org/abs/2106.01401

摘要
        卷积神经网络(CNNs)在计算机视觉中无处不在,具有无数有效和高效的变化。最近,Container——最初是在自然语言处理中引入的——已经越来越多地应用于计算机视觉。早期的用户继续使用CNN的骨干,最新的网络是端到端无CNN的Transformer解决方案。最近一个令人惊讶的发现表明,一个简单的基于MLP的解决方案,没有任何传统的卷积或Transformer组件,可以产生有效的视觉表示。虽然CNN、Transformer和MLP-Mixers可以被视为完全不同的架构,但我们提供了一个统一的视图,表明它们实际上是在神经网络堆栈中聚合空间上下文的更通用方法的特殊情况。我们提出了Container(上下文聚合网络),一个用于多头上下文聚合的通用构建块,它可以利用Container的长期交互作用,同时仍然利用局部卷积操作的诱导偏差,导致更快的收敛速度,这经常在CNN中看到。我们的Container架构在ImageNet上使用22M参数实现了82.7%的Top-1精度,比DeiT-Small提高了2.8,并且可以在短短200个时代收敛到79.9%的Top-1精度。比起相比的基于Transformer的方法不能很好地扩展到下游任务依赖较大的输入图像的分辨率,我们高效的网络,名叫CONTAINER-LIGHT,可以使用在目标检测和分割网络如DETR实例,RetinaNet和Mask-RCNN获得令人印象深刻的检测图38.9,43.8,45.1和掩码mAP为41.3,与具有可比较的计算和参数大小的ResNet-50骨干相比,分别提供了6.6、7.3、6.9和6.6 pts的较大改进。与DINO框架下的DeiT相比,我们的方法在自监督学习方面也取得了很好的效果。
   

 仅需22M参数量,所提CONTAINER在ImageNet数据集取得了82.7%的的top1精度,以2.8%优于DeiT-Small;此外仅需200epoch即可达到79.9%的top1精度。不用于难以扩展到下游任务的Transformer方案(因为需要更高分辨率),该方案CONTAINER-LIGHT可以嵌入到DETR、RetinaNet以及Mask-RCNN等架构中用于目标检测、实例分割任务并分别取得了6.6,7.6,6.9指标提升。

        提供了一个统一视角表明:它们均是更广义方案下通过神经网络集成空间上下文信息的特例。我们提出了CONTAINER(CONText AggregatIon NEtwoRK),一种用于多头上下文集成(Context Aggregation)的广义构建模块 。

本文有以下几点贡献:

  • 提出了关于主流视觉架构的一个统一视角;
  • 提出了一种新颖的模块CONTAINER,它通过可学习参数和响应的架构混合使用了静态与动态关联矩阵(Affinity Matrix),在图像分类任务中表现出了很强的结果;
  • 提出了一种高效&有效的扩展CONTAINER-LIGHT在检测与分割方面取得了显著的性能提升。

3.Context Aggregation加入到YOLOv9

3.1新建py文件,路径为models/attention/attention.py

###################### ContextAggregation  ####     START   by  AI&CV  ###############################from mmcv.cnn import ConvModule
from mmengine.model import caffe2_xavier_init, constant_initclass ContextAggregation(nn.Module):"""Context Aggregation Block.Args:in_channels (int): Number of input channels.reduction (int, optional): Channel reduction ratio. Default: 1.conv_cfg (dict or None, optional): Config dict for the convolutionlayer. Default: None."""def __init__(self, in_channels, reduction=1):super(ContextAggregation, self).__init__()self.in_channels = in_channelsself.reduction = reductionself.inter_channels = max(in_channels // reduction, 1)conv_params = dict(kernel_size=1, act_cfg=None)self.a = ConvModule(in_channels, 1, **conv_params)self.k = ConvModule(in_channels, 1, **conv_params)self.v = ConvModule(in_channels, self.inter_channels, **conv_params)self.m = ConvModule(self.inter_channels, in_channels, **conv_params)self.init_weights()def init_weights(self):for m in (self.a, self.k, self.v):caffe2_xavier_init(m.conv)constant_init(self.m.conv, 0)def forward(self, x):# n, c = x.size(0)n = x.size(0)c = self.inter_channels# n, nH, nW, c = x.shape# a: [N, 1, H, W]a = self.a(x).sigmoid()# k: [N, 1, HW, 1]k = self.k(x).view(n, 1, -1, 1).softmax(2)# v: [N, 1, C, HW]v = self.v(x).view(n, 1, c, -1)# y: [N, C, 1, 1]y = torch.matmul(v, k).view(n, c, 1, 1)y = self.m(y) * areturn x + y###################### ContextAggregation  ####     END   by  AI&CV  ###############################

3.2修改yolo.py

1)首先进行引用

from models.attention.attention import *

2)修改def parse_model(d, ch):  # model_dict, input_channels(3)

在源码基础上加入ContextAggregation

        elif m is nn.BatchNorm2d:args = [ch[f]]###attention #####elif m in {EMA_attention, CoordAtt,CBAM,GAM_Attention,PolarizedSelfAttention,SimAM,NAMAttention,DoubleAttention,SKAttention,ContextAggregation}:c2 = ch[f]args = [c2, *args]###attention #####

3.3 yolov9-c-ContextAggregation.yaml

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9[-1, 1, ContextAggregation, [512]],  # 10]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 11# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 14# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 17 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 14], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 11], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 23 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 24[7, 1, CBLinear, [[256, 512]]], # 25[9, 1, CBLinear, [[256, 512, 512]]], # 26# conv down[0, 1, Conv, [64, 3, 2]],  # 27-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 28-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 29# avg-conv down fuse[-1, 1, ADown, [256]],  # 30-P3/8[[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 32# avg-conv down fuse[-1, 1, ADown, [512]],  # 33-P4/16[[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 35# avg-conv down fuse[-1, 1, ADown, [512]],  # 36-P5/32[[26, -1], 1, CBFuse, [[2]]], # 37# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38# detection head# detect[[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2871627.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Redis数据结构对象之列表对象

列表对象 概述 ziplist编码的列表对象使用压缩列表作为底层实现,每个压缩列表节点(entry)保存了一个列表元素。 例子如下。如果numbers键的值对象使用的是ziplist编码,这个这个值对对象将会是如图所示的样子。 另一方面,linkedlist编码的列…

SAR ADC教程系列5——FFT频谱泄露以及相干采样

频谱泄露的出现以及如何规避? 为什么要相干采样? 1.分析ADC输出信号的频谱工具:DFT(Discrete Fourier Transform) 重点:DFT相邻频谱频率间隔为fs/N 如何规避频谱泄露? 对于DFT,它对于接收到的信…

算法打卡day15|二叉树篇04|Leetcode 110.平衡二叉树、257. 二叉树的所有路径、404.左叶子之和

算法题 Leetcode 110.平衡二叉树 题目链接:110.平衡二叉树 大佬视频讲解:平衡二叉树视频讲解 个人思路 可以用递归法,计算左右子树的高度差,当超过1时就不为平衡二叉树了; 解法 回顾一下二叉树节点的深度与高度; …

旧华硕电脑开机非常慢 电脑开机黑屏很久才显示品牌logo导致整体开机速度非常的慢怎么办

前提条件 电池需要20%(就是电池没有报废)且电脑接好电源,千万别断电,电脑会变成砖头的 解决办法 更新bios即可解决,去对应品牌官网下载最新的bios版本就行了 网上都是一些更新驱动啊

leetcode代码记录(每日温度

目录 1. 题目:2. 我的代码:小结: 1. 题目: 给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如…

Docker 哲学 - 容器操作 -cp

1、拷贝 容器绑定的 volume的 数据,到指定目录 2、匿名挂载 volume 只定义一个数据咋在容器内的path,docker自动生成一个 sha256 的key作为 volume 名字。这个 sha256 跟 commitID 一致都是唯一的所以 ,docker利用这个机制,可以…

5分钟教你激活喀秋莎Camtasia2023中文破解Crack下载附安装教程

Camtasia2023又称喀秋莎2023,集屏幕录制和视频剪辑功能于一体的软件,提供屏幕录制、区域录制、摄像头录制等多种录制方式,Camtasia2023版本带来了新的动态背景库、霓虹光标图像、录制语音旁白等多种新功能,适用于游戏录制、课程录…

ISIS接口MD5 算法认证实验简述

默认情况下,ISIS接口认证通过在ISIS协议数据单元(PDU)中添加认证字段,例如:MD5 算法,用于验证发送方的身份。 ISIS接口认证防止未经授权的设备加入到网络中,并确保邻居之间的通信是可信的。它可…

springboot使用socket和端口启动gRPC服务器的比较

gRPC 服务器启动方式比较 一. 介绍二. 套接字地址方式三. 端口方式四. 如何选择 前言 这是我在这个网站整理的笔记,有错误的地方请指出,关注我,接下来还会持续更新。 作者:神的孩子都在歌唱 一. 介绍 百度百科套接字 gRPC 是一种高性能的远…

《手把手教你》系列技巧篇(三十八)-java+ selenium自动化测试-日历时间控件-下篇(详解教程)

1.简介 理想很丰满现实很骨感,在应用selenium实现web自动化时,经常会遇到处理日期控件点击问题,手工很简单,可以一个个点击日期控件选择需要的日期,但自动化执行过程中,完全复制手工这样的操作就有点难了。…

C++根据三点求平行四边形的平分阵列

C根据三点求平行四边形的平分阵列 如下图,已知ABC三个点,且ABCD是平行四边形,求各个点的(阵列)的坐标 void OnBnClickedButtonCreatematrix3point() {//通过前面三点,计算出第四点POINTF64 t_pointMiddle;//对角线交点t_pointMi…

iOS常见崩溃简介

1. 崩溃 多指在移动设备(如iOS、Android设备)中或不可移动设备(如:Windows、Linux等设备), 在打开或使用应用程序时出现的突然退出中断的情况(类似于Windows的应用程序崩溃)。 多表现为&#…

关于IP-Adapter的十几个模型,到底是干啥用的?

🎠背景介绍 IP-Adapter的一系列模型在stable diffusion的实际应用中,越来越被频繁的使用到,用于“换脸”或者“保证角色的一致性”,但是很多朋友在安装或者使用别人的工作流的时候,经常会遇到各种各样的问题&#xff…

考研数二要掌握的初中知识点

文章目录 一、整式1. 同底数幂的乘法2. 幂的乘方3. 积的乘方4. 乘法分配律5. 同底数幂的除法 二、分式1. 分式的乘法2. 分式的除法3. 分式的乘方4. 分式的最简公分母5. 负指数幂6. 比例变形7. 分离常数法 三、二次根式0. 平方根和算数平方根的重要概念1. 乘方去根号2. 二次根式…

118. 杨辉三角(Java)

这里写目录标题 题目描述:输入:输出:代码实现: 题目描述: 给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 输入: numRows 5输出: [[1],[1,1],[1…

考研数学|武忠祥各阶段搭配用书汇总

看到有人问武忠祥老师,不请自来 武忠祥老师,绝对的宝藏老师,我在考研强化阶段的时候听过他的强化课程,听完之后,很多问题都想通了,所以,如果有人想问武忠祥老师行不行,那我就一个字…

19. UE5 RPG使用GameplayEffect的Attribute Based Modifiers

前几篇文章我也说了GE的基础使用,但是,对一些属性的应用没有述说,后续,我将一点一点的将它们如何使用书写下来。 这一篇,主要就讲解一下Attribute Based Modifiers使用,先说一下它的应用场景,一…

数据结构——栈和队列的表示与实现详解

目录 1.栈的定义与特点 2.队列的定义与特点 3.案例引入 4.栈的表示和操作的实现 1.顺序栈的表示 代码示例: 2.顺序栈的初始化 代码示例: 3.判断栈是否为空 代码示例: 4.求顺序栈长度 代码示例: 5.清空顺序栈 …

Spring Boot中application配置文件的生效顺序

Spring Boot的一个重要特性就是它的自动配置,这一特性在很大程度上依赖于名称为application的配置文件。本文将详细介绍在Spring Boot中,这些配置文件的加载顺序以及每份文件的应用范围。 文章目录 配置文件的种类配置文件的加载顺序配置文件的环境切换 …

操作系统内功篇:硬件结构之CPU缓存一致性

一 CPU Cache的数据写入 1.1 CPU Cache的结构 是由很多个Cache Line组成的,CPU Line是CPU从内存读取的基本单位,CPU Line是由多个标志数据块组成。 1.2 CPU Cache数据的写入 数据不仅仅只有读取,还有数据的写入,写入数据也是先…