走进volatile的世界,探索它与可见性,有序性,原子性之间的爱恨情仇!

写在开头

在之前的几篇博文中,我们都提到了 volatile 关键字,这个单词中文释义为:不稳定的,易挥发的,在Java中代表变量修饰符,用来修饰会被不同线程访问和修改的变量,对于方法,代码块,方法参数,局部变量以及实例常量,类常量多不能进行修饰。

自JDK1.5之后,官网对volatile进行了语义增强,这让它在Java多线程领域越发重要!因此,我们今天就抽一晚上时间,来学一学这个关键字,首先,我们从标题入手,思考这样的一个问题:

volatile是如何保证可见性的?又是如何禁止指令重排的,它为什么不能实现原子性呢?

带着疑问,我们一起走进volatile的世界,探索它与可见性,有序性,原子性之间的爱恨情仇!

volatile如何保证可见性?

volatile保证了不同线程对共享变量进行操作时的可见性,即一个线程修改了共享变量的值,共享变量修改后的值对其他线程立即可见。

我们先通过之前写的一个小案例来感受一下什么是可见性问题:

【代码示例1】

public class Test {//是否停止 变量private static boolean stop = false;public static void main(String[] args) throws InterruptedException {//启动线程 1,当 stop 为 true,结束循环new Thread(() -> {System.out.println("线程 1 正在运行...");while (!stop) ;System.out.println("线程 1 终止");}).start();//休眠 1 秒Thread.sleep(1000);//启动线程 2, 设置 stop = truenew Thread(() -> {System.out.println("线程 2 正在运行...");stop = true;System.out.println("设置 stop 变量为 true.");}).start();}
}

输出:

线程 1 正在运行...
线程 2 正在运行...
设置 stop 变量为 true.

原因:
我们会发现,线程1运行起来后,休眠1秒,启动线程2,可即便线程2把stop设置为true了,线程1仍然没有停止,这个就是因为 CPU 缓存导致的可见性导致的问题。线程 2 设置 stop 变量为 true,线程 1 在 CPU 1上执行,读取的 CPU 1 缓存中的 stop 变量仍然为 false,线程 1 一直在循环执行。
在这里插入图片描述
那这个问题怎么解决呢?很好解决!我们排volatile上场可以秒搞定,只需要给stop变量加上volatile修饰符即可!

【代码示例2】

//给stop变量增加volatile修饰符
private static volatile boolean stop = false;

输出:

线程 1 正在运行...
线程 2 正在运行...
设置 stop 变量为 true.
线程 1 终止

从结果中看,线程1成功的读取到了线程而设置为true的stop变量值,解决了可见性问题。那volatile到底是什么让变量在多个线程之间保持可见性的呢?请看下图!
在这里插入图片描述
如果我们将变量声明为 volatile ,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取,具体实现可总结为5步。

  • 1️⃣在生成最低成汇编指令时,对volatile修饰的共享变量写操作增加Lock前缀指令,Lock 前缀的指令会引起 CPU 缓存写回内存;
  • 2️⃣CPU 的缓存回写到内存会导致其他 CPU 缓存了该内存地址的数据无效;
  • 3️⃣volatile 变量通过缓存一致性协议保证每个线程获得最新值;
  • 4️⃣缓存一致性协议保证每个 CPU 通过嗅探在总线上传播的数据来检查自己缓存的值是不是修改;
  • 5️⃣当 CPU 发现自己缓存行对应的内存地址被修改,会将当前 CPU 的缓存行设置成无效状态,重新从内存中把数据读到 CPU 缓存。

volatile如何保证有序性?

在之前的学习我们了解到,为了充分利用缓存,提高程序的执行速度,编译器在底层执行的时候,会进行指令重排序的优化操作,但这种优化,在有些时候会带来 有序性 的问题。

那何为有序性呢?我们可以通俗理解为:程序执行的顺序要按照代码的先后顺序。 当然,之前我们还说过发生有序性问题时,我们可以通过给变量添加volatile修饰符进行解决。

首先,我们来回顾一下之前写的一个关于有序性问题的测试类。
【代码示例1】

int a = 1;(1)
int b = 2;(2)
int c = a + b;(3)

上面的这段代码中,c变量依赖a,b的值,因此,在编译器优化重排时,c肯定会在a,b赋值以后执行,但a,b之间没有依赖关系,可能会发生重排序,但这种重排序即便到了多线程中依旧不会存在问题,因为即便重排对执行结果也无影响。

但有些时候,指令重排序可以保证串行语义一致,但是没有义务保证多线程间的语义也一致,我们继续看下面这段代码:

【代码示例2】

public class Test {private static int num = 0;private static boolean ready = false;//禁止指令重排,解决顺序性问题//private static volatile boolean ready = false;public static class ReadThread extends Thread {@Overridepublic void run() {while (!Thread.currentThread().isInterrupted()) {if (ready) {//(1)System.out.println(num + num);//(2)}System.out.println("读取线程...");}}}public static class WriteRead extends Thread {@Overridepublic void run() {num = 2;//(3)ready = true;//(4)System.out.println("赋值线程...");}}public static void main(String[] args) throws InterruptedException {ReadThread rt = new ReadThread();rt.start();WriteRead wr = new WriteRead();wr.start();Thread.sleep(10);rt.interrupt();System.out.println("rt stop...");}
}

我们定义了2个线程,一个用来求和操作,一个用来赋值操作,因为定义的是成员变量,所以代码(1)(2)(3)(4)之间不存在依赖关系,在运行时极可能发生指令重排序,如将(4)在(3)前执行,顺序为(4)(1)(3)(2),这时输出的就是0而不是4,但在很多性能比较好的电脑上,这种重排序情况不易复现。
这时,我们给ready 变量添加一个volatile关键字,就成功的解决问题了。

volatile关键字可以禁止指令重排的原因主要有两个!

一、3 个 happens-before 规则的实现

  1. 对一个 volatile 变量的写 happens-before 任意后续对这个 volatile 变量的读;
  2. 一个线程内,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操作;
  3. happens-before 传递性,A happens-before B,B happens-before C,则 A happens-before C。

二、内存屏障
变量声明为 volatile 后,在对这个变量进行读写操作的时候,会通过插入特定的 内存屏障 的方式来禁止指令重排序。

内存屏障(Memory Barrier 又称内存栅栏,是一个 CPU 指令),为了实现volatile 内存语义,volatile 变量的写操作,在变量的前面和后面分别插入内存屏障;volatile 变量的读操作是在后面插入两个内存屏障。

具体屏障规则:

  1. 在每个 volatile 写操作的前面插入一个 StoreStore 屏障;
  2. 在每个 volatile 写操作的后面插入一个 StoreLoad 屏障;
  3. 在每个 volatile 读操作的后面插入一个 LoadLoad 屏障;
  4. 在每个 volatile 读操作的后面插入一个 LoadStore 屏障。

屏障说明:

  1. StoreStore:禁止之前的普通写和之后的 volatile 写重排序;
  2. StoreLoad:禁止之前的 volatile 写与之后的 volatile 读/写重排序;
  3. LoadLoad:禁止之后所有的普通读操作和之前的 volatile 读重排序;
  4. LoadStore:禁止之后所有的普通写操作和之前的 volatile 读重排序。

OK,知道了这些内容之后,我们再回头看代码示例2中,增加了volatile关键字后的执行顺序,在赋值线程启动后,执行顺序会变成(3)(4)(1)(2),这时打印的结果就为4啦!

volatile为什么不能保证原子性?

我们讲完了volatile修饰符保证可见性与有序性的内容,接下来我们思考另外一个问题,它能够保证原子性吗?为什么?我们依旧通过一段代码去证明一下!

【代码示例3】

public class Test {//计数变量static volatile int count = 0;public static void main(String[] args) throws InterruptedException {//线程 1 给 count 加 10000Thread t1 = new Thread(() -> {for (int j = 0; j <10000; j++) {count++;}System.out.println("thread t1 count 加 10000 结束");});//线程 2 给 count 加 10000Thread t2 = new Thread(() -> {for (int j = 0; j <10000; j++) {count++;}System.out.println("thread t2 count 加 10000 结束");});//启动线程 1t1.start();//启动线程 2t2.start();//等待线程 1 执行完成t1.join();//等待线程 2 执行完成t2.join();//打印 count 变量System.out.println(count);}
}

我们创建了2个线程,分别对count进行加10000操作,理论上最终输出的结果应该是20000万对吧,但实际并不是,我们看一下真实输出。

输出:

thread t1 count 加 10000 结束
thread t2 count 加 10000 结束
14281

原因:
Java 代码中 的 count++并非原子的,而是一个复合性操作,至少需要三条CPU指令:

  • 指令 1:把变量 count 从内存加载到CPU的寄存器
  • 指令 2:在寄存器中执行 count + 1 操作
  • 指令 3:+1 后的结果写入CPU缓存或内存

即使是单核的 CPU,当线程 1 执行到指令 1 时发生线程切换,线程 2 从内存中读取 count 变量,此时线程 1 和线程 2 中的 count 变量值是相等,都执行完指令 2 和指令 3,写入的 count 的值是相同的。从结果上看,两个线程都进行了 count++,但是 count 的值只增加了 1。这种情况多发生在cpu占用时间较长的线程中,若单线程对count仅增加100,那我们就很难遇到线程的切换,得出的结果也就是200啦。

要想解决也很简单,利用 synchronized、Lock或者AtomicInteger都可以,我们在后面的文章中会聊到的,请继续保持关注哦!

结尾彩蛋

如果本篇博客对您有一定的帮助,大家记得留言+点赞+收藏呀。原创不易,转载请联系Build哥!

在这里插入图片描述
如果您想与Build哥的关系更近一步,还可以关注“JavaBuild888”,在这里除了看到《Java成长计划》系列博文,还有提升工作效率的小笔记、读书心得、大厂面经、人生感悟等等,欢迎您的加入!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2871338.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

在Windows系统上搭建MongoDB-这篇文章刚刚好

在Windows系统上搭建MongoDB集群 文章目录 1.下载MongoDB2.集群描述3.构建集群文件目录4.新建配置文件5.启动MongoDB服务6.配置集群7.集群测试8.设置密码和开启认证一、安装MongoDB 1.下载MongoDB 去MongoDB官网下载解压版免安装的压缩包。 https://www.mongodb.com/try/do…

.rmallox勒索病毒解密方法|勒索病毒解决|勒索病毒恢复|数据库修复

导言&#xff1a; 近年来&#xff0c;勒索病毒的威胁日益增加&#xff0c;其中一种名为.rmallox的勒索病毒备受关注。这种病毒通过加密文件并勒索赎金来威胁受害者。本文将介绍.rmallox勒索病毒的特点&#xff0c;以及如何恢复被其加密的数据文件&#xff0c;并提供预防措施&a…

网络安全JavaSE第二天(持续更新)

3. 基本数据与运算 3.6 运算符 3.6.1 算术运算符 在 Java 中&#xff0c;算术运算符包含&#xff1a;、-、*、/、% public class ArithmeticOperator { public static void main(String[] args) { int a 10; // 定义了一个整型类型的变量 a&#xff0c;它的值是 10 int b …

误删电脑C盘要重装系统吗 误删电脑C盘文件怎么恢复 误删c盘系统文件怎么修复 不小心删除C盘的东西恢复

C盘通常是操作系统(如Windows)的默认安装目录。它包含了操作系统的核心文件、驱动程序及系统所需的各种支持文件。这些文件对于计算机的正常运行至关重要。如果我们不小心将C盘的重要文件删除&#xff0c;会导致应用无法打开。本篇文章&#xff0c;我们将学习误删电脑C盘要重装…

再见 Pandas,又一数据处理神器

cuDF介绍 cuDF是一个基于Apache Arrow列内存格式的Python GPU DataFrame库&#xff0c;用于加载、连接、聚合、过滤和其他数据操作。cuDF还提供了类似于pandas的API。 GitHub&#xff1a; https://github.com/rapidsai/cudf Documentation&#xff1a; https://docs.rapids.a…

Alma Linux - Primavera P6 EPPM 安装及分享

引言 继上一期发布的Rocky Linux版环境发布之后&#xff0c;近日我又制作了基于Alma Enterprise Linux 的P6虚拟机环境&#xff0c;同样里面包含了全套P6 最新版应用服务 此虚拟机仅用于演示、培训和测试目的。如您在生产环境中使用此虚拟机&#xff0c;请先与Oracle Primaver…

四连通与八连通的区别 -- 图例讲解

概念 四连通区域&#xff1a;指从某个点出发&#xff0c;只能通过上、下、左、右四个方向的运动到达区域内的其他点&#xff0c;且不能跨越区域的边界。 八连通区域&#xff1a;除了上、下、左、右四个方向&#xff0c;还可以沿对角线方向&#xff08;左上、右上、左下、右下…

Python 查找并高亮PDF中的指定文本

在处理大量PDF文档时&#xff0c;有时我们需要快速找到特定的文本信息。本文将提供以下三个Python示例来帮助你在PDF文件中快速查找并高亮指定的文本。 查找并高亮PDF中所有的指定文本查找并高亮PDF某个区域内的指定文本使用正则表达式搜索指定文本并高亮 本文将用到国产第三方…

Spring Web MVC入门(3)

学习Spring MVC 请求 传递JSON数据 JSON概念 JSON: JavaScript Object Natation JSON是一种轻量的数据交互格式, 采用完全独立于编程语言的文本格式来存储和标识数据. 简单来说, JSON是一种数据格式, 有自己的格式和语法, 使用文本来表示对象或数组的信息, 因此JSON的本质…

C++之deque与vector、list对比分析

一.deque讲解 对于vector和list&#xff0c;前一个是顺序表&#xff0c;后一个是带头双向循环链表&#xff0c;前面我们已经实现过&#xff0c;这里就不再讲解了&#xff0c;直接上deque了。 deque&#xff1a;双端队列 常见接口大家可以查看下面链接&#xff1a; deque - …

Java多线程实战-CountDownLatch模拟压测实现

&#x1f3f7;️个人主页&#xff1a;牵着猫散步的鼠鼠 &#x1f3f7;️系列专栏&#xff1a;Java全栈-专栏 &#x1f3f7;️本系列源码仓库&#xff1a;多线程并发编程学习的多个代码片段(github) &#x1f3f7;️个人学习笔记&#xff0c;若有缺误&#xff0c;欢迎评论区指正…

深度学习 精选笔记(13.2)深度卷积神经网络-AlexNet模型

学习参考&#xff1a; 动手学深度学习2.0Deep-Learning-with-TensorFlow-bookpytorchlightning ①如有冒犯、请联系侵删。 ②已写完的笔记文章会不定时一直修订修改(删、改、增)&#xff0c;以达到集多方教程的精华于一文的目的。 ③非常推荐上面&#xff08;学习参考&#x…

单片机学到什么程度才可以去工作?

单片机学到什么程度才可以去工作? 如果没有名校或学位的加持&#xff0c;你还得再努力一把&#xff0c;才能从激烈的竞争中胜出。以下这些技能可以给你加分&#xff0c;你看情况学&#xff0c;不同行业对这些组件会有取舍: . Cortex-M内核:理解MCU内核各部件的工作机制&#…

如何优化使用Nginx

文章目录 &#x1f50a;博主介绍&#x1f964;本文内容数据压缩负载均衡安装OpenResty或ngx_http_lua_module配置Nginx以启用Lua编写Lua脚本配置upstream块以使用Lua变量测试配置 合并请求1. 确保SSI模块已启用2. 配置Nginx以使用SSI3. 使用SSI指令4. 重新加载或重启Nginx 集成…

Python爬虫与数据可视化源码免费领取

引言 作为一名在软件技术领域深耕多年的专业人士&#xff0c;我不仅在软件开发和项目部署方面积累了丰富的实践经验&#xff0c;更以卓越的技术实力获得了&#x1f3c5;30项软件著作权证书的殊荣。这些成就不仅是对我的技术专长的肯定&#xff0c;也是对我的创新精神和专业承诺…

【leetcode-53最大子数组和】

题目&#xff1a; 给你一个整数数组 nums &#xff0c;请你找出一个具有最大和的连续子数组&#xff08;子数组最少包含一个元素&#xff09;&#xff0c;返回其最大和。子数组是数组中的一个连续部分。 示例 1&#xff1a; 输入&#xff1a;nums [-2,1,-3,4,-1,2,1,-5,4] …

MySQL知识点极速入门

准备SQL 创建数据库&#xff1a; 创建一个名为emptest的数据库 create database emptest; use emptest; 创建数据表&#xff1a; 设计一张员工信息表&#xff0c;要求如下&#xff1a; 1. 编号&#xff08;纯数字&#xff09; 2. 员工工号 (字符串类型&#xff0c;长度不超…

Windows10中配置并使用nvidia-smi

1. 问题 当在window10系统中使用nvidia-smi命令时&#xff1a; 会得到提示&#xff1a;nvidia-smi不是内部或外部命令&#xff0c;也不是可运行的程序或批处理文件。 注&#xff1a;其实安装NVIDIA控制面板时&#xff0c;软件已内置安装了nvidia-smi.exe&#xff0c;我们只需…

文件包含漏洞(input、filter、zip)

一、PHP://INPUT php://input可以访问请求的原始数据的只读流&#xff0c;将post请求的数据当作php代码执行。当传入的参数作为文件名打开时&#xff0c;可以将参数设为php://input,同时post想设置的文件内容&#xff0c;php执行时会将post内容当作文件内容。从而导致任意代码…

【Java刷题篇】串联所有单词的子串

这里写目录标题 &#x1f4c3;1.题目&#x1f4dc;2.分析题目&#x1f4dc;3.算法原理&#x1f9e0;4.思路叙述✍1.进窗口✍2.判断有效个数✍3.维护窗口✍4.出窗口 &#x1f4a5;5.完整代码 &#x1f4c3;1.题目 力扣链接: 串联所有单词的子串 &#x1f4dc;2.分析题目 阅…