应用回归分析:弹性网络回归

弹性网络回归:原理、优势与应用

弹性网络回归(Elastic Net Regression)是一种广泛使用的线性回归方法,它结合了岭回归(Ridge Regression)和套索回归(Lasso Regression)的特点。通过融合这两种方法的正则化项,弹性网络旨在克服当数据集具有多重共线性、特征维度高于样本数量,或者某些特征之间存在强相关时单独使用岭回归或套索回归的局限性。本文将介绍弹性网络回归的基本原理、其优势以及在实际问题中的应用。

弹性网络回归的原理

弹性网络回归通过在损失函数中同时加入L1和L2正则化项来进行参数估计,从而结合了套索回归的变量选择能力和岭回归处理共线性的能力。其损失函数定义为:

弹性网络的优势

弹性网络回归的主要优势包括:

  • 处理共线性:通过L2正则化项,弹性网络可以有效处理特征间的高度共线性问题。
  • 变量选择:L1正则化项提供了变量选择的功能,有助于构建稀疏模型,提高模型的可解释性。
  • 灵活性:通过调整α参数,弹性网络提供了从岭回归到套索回归之间的平滑过渡,使得模型更加灵活。
  • 适应性:适用于各种规模的数据集,包括特征数多于样本数的情况。

应用场景

弹性网络回归在许多领域都有广泛的应用,包括:

  • 金融:信用评分、风险管理等领域,用于预测金融风险或客户的违约概率。
  • 生物信息学:基因数据分析,用于识别与疾病相关的基因。
  • 推荐系统:构建推荐算法,通过用户的历史行为数据来预测用户的偏好。
  • 图像处理:特征提取和降维,用于图像识别或分类。

代码示例

from sklearn.datasets import make_regression
from sklearn.linear_model import ElasticNet
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 生成回归数据集
X, y = make_regression(n_features=100, noise=0.1)# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 初始化弹性网络模型
elastic_net = ElasticNet(alpha=1.0, l1_ratio=0.5)# 训练模型
elastic_net.fit(X_train, y_train)# 预测
y_pred = elastic_net.predict(X_test)# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f"均方误差(MSE): {mse:.2f}")

结论

弹性网络回归是一种强大而灵活的线性回归方法,适用于处理具有复杂结构的数据集。通过合理选择正则化参数,弹性网络能够在变量选择和模型稳定性之间找到良好的平衡,从而在多个领域得到有效应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2813938.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【c语言】内存函数

欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎指出~ 目录 memcpy函数的使用和模拟实现 memcpy函数的使用 memcpy函数的模拟实现 memmove的使用和模拟实现 memmove的使用 memmove的模拟实现 memset函数的使用 memcmp函数…

深度学习 精选笔记(3)线性神经网络-线性回归

学习参考: 动手学深度学习2.0Deep-Learning-with-TensorFlow-bookpytorchlightning ①如有冒犯、请联系侵删。 ②已写完的笔记文章会不定时一直修订修改(删、改、增),以达到集多方教程的精华于一文的目的。 ③非常推荐上面(学习参考&#x…

【kubernetes】关于k8s集群的资源发布方式(灰度/滚动发布)

目录 一、常见的发布方式 二、详解kubectl陈述式方式做灰度发布(金丝雀发布) 步骤一:先基于deployment控制器创建pod,然后发布 步骤二:基于命令行灰度发布 步骤三:测试等到版本稳定以后,再完…

排序算法--堆排序

堆排序的时间复杂度是O(N*logN),优于选择排序O(N^2) 一、堆 1.堆的概念:堆一般指的是二叉堆,顾名思义,二叉堆是完全二叉树或者近似完全二 2.堆的性质:①完全二叉树 ②每…

python cookbook内容提炼-第一章数据结构和算法

python cookbook内容提炼 博主打算做一篇python cookbook内容提炼的文章,这篇博客会很实用。 第一章:数据结构和算法 第一章的内容很实用,博主做了一些内容上的提炼,把一些最重要的知识点写在了下面。 下面内容中,…

【论文阅读】基于人工智能目标检测与跟踪技术的过冷流沸腾气泡特征提取

Bubble feature extraction in subcooled flow boiling using AI-based object detection and tracking techniques 基于人工智能目标检测与跟踪技术的过冷流沸腾气泡特征提取 期刊信息:International Journal of Heat and Mass Transfer 2024 级别:EI检…

《opencv实用探索·二十二》支持向量机SVM用法

1、概述 在了解支持向量机SVM用法之前先了解一些概念: (1)线性可分和线性不可分 如果在一个二维空间有一堆样本,如下图所示,如果能找到一条线把这两类样本分开至线的两侧,那么这个样本集就是线性可分&#…

docker 容器修改端口

一般在运行容器时,我们都会通过参数 -p(使用大写的-P参数则会随机选择宿主机的一个端口进行映射)来指定宿主机和容器端口的映射,例如 docker run -it -d --name [container-name] -p 8088:80 [image-name]这里是将容器内的80端口…

针对KZG承诺和高效laconic OT的extractable witness encryption

1. 引言 2024年以太坊基金会等成员论文 Extractable Witness Encryption for KZG Commitments and Efficient Laconic OT,开源代码实现见: https://github.com/rot256/research-we-kzg(Rust) 在该论文中,提供了一种…

R语言数学建模(一)—— 基础知识

R语言数学建模(一)—— 基础知识 文章目录 R语言数学建模(一)—— 基础知识前言一、建模软件1.1 软件建模的基础1.2 模型的分类1.3 不同类型模型间的联系1.4 一些术语1.5 建模如何适应数据分析过程 二、Tidyverse基础2.1 tidyvers…

Linux学习笔记11——用户组添加删除

Linux 是多用户多任务操作系统,换句话说,Linux 系统支持多个用户在同一时间内登陆,不同用户可以执行不同的任务,并且互不影响。 例如,某台 Linux 服务器上有 4 个用户,分别是 root、www、ftp 和 mysql&…

【README 小技巧】在项目README.md 中展示发布到maven 仓库版本

在项目README.md 中展示发不到nexus 的快照版本 <p align"center"><a target"_blank" href"https://search.maven.org/search?qwu-lazy-cloud-network%20wu-lazy-cloud-network"><img src"https://img-home.csdnimg.cn/ima…

逆向案例二:关键字密文解密,自定义的加密解密。基于企名片科技的爬取。

import requests import execjsfor i in range(4):i i1url https://vipapi.qimingpian.cn/Activity/channelInformationByChannelNamedata {channel_name: 24新声,page: f{i},num: 20,unionid: W9wLD4rHIZrB3GLTUncmHgbZcEepR78xJa5Zit6XTMtata86DehdxDt/fDbcHeeJWqqIs6k…

idea 更新maven java版本变化

今天遇到个问题就是&#xff0c;点击maven的reload&#xff0c;会导致setting 里的java compiler 版本变化 这里的话&#xff0c;应该是settings.xml文件里面的这个限定死了&#xff0c;修改一下或者去掉就可以了 <profile><id>JDK-1.8</id><activatio…

Spring Boot项目误将Integer类型写成int来进行传参

在处理项目中Idea中无报错&#xff1a; 问题&#xff1a; localhost:8080/param/m2在浏览器中输入&#xff1a;localhost:8080/param/m2 产生报错&#xff1a; This application has no explicit mapping for /error, so you are seeing this as a fallback. Tue Feb 27 20:55…

springboot+vue+mysql+easyexcel实现文件导出+导出的excel单元格添加下拉列表

Excel导出 EasyExcel官方文档 官方文档本身写的非常详细&#xff0c;我就是根据官方文档内的写Excel里web中的写实现的导出 后端 对象 需要写一个实体类 其中涉及到一些用到的EasyExcel的注解 ColumnWidth(20) 列宽设为20&#xff0c;自定义的&#xff0c;放在实体类上面是…

如何在有限的预算里做好服务器的DDOS防护?

在网络安全领域&#xff0c;防御分布式拒绝服务&#xff08;DDoS&#xff09;攻击是一项持续且复杂的挑战。尤其对于预算有限的组织来说&#xff0c;如何在不牺牲安全性的前提下进行有效的防护&#xff0c;更是一个需要深思熟虑的问题。以下是一些建议&#xff0c;帮助你在有限…

网络初识(概念入门)

目录 1.局域网VS广域网 1.1局域网 1.2广域网 2.五元组 2.1 IP和端口 2.1.1 IP 2.1.2端口号 2.2协议 3.协议分层 4. TCP/IP五层模型 5.封装和分用 5.1封装 5.2分用 1.局域网VS广域网 1.1局域网 简单介绍&#xff1a;指在某一特定区域内由多台计算机组成的互联网组…

Nginx网络服务六-----IP透传、调度算法和负载均衡

1.实现反向代理客户端 IP 透传 就是在日志里面加上一个变量 Module ngx_http_proxy_module [rootcentos8 ~]# cat /apps/nginx/conf/conf.d/pc.conf server { listen 80; server_name www.kgc.org; location / { index index.html index.php; root /data/nginx/html/p…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的生活垃圾检测与分类系统(Python+PySide6界面+训练代码)

摘要&#xff1a;本篇博客详细讲述了如何利用深度学习构建一个生活垃圾检测与分类系统&#xff0c;并且提供了完整的实现代码。该系统基于强大的YOLOv8算法&#xff0c;并进行了与前代算法YOLOv7、YOLOv6、YOLOv5的细致对比&#xff0c;展示了其在图像、视频、实时视频流和批量…