Linux内核队列queue.h

文章目录

  • 一、简介
  • 二、SLIST单向无尾链表
    • 2.1 介绍
    • 2.2 操作
    • 2.3 例子
  • 三、STAILQ单向有尾链表
  • 四、LIST双向无尾链表
  • 五、TAILQ双向有尾链表
  • 六、CIRCLEQ循环链表
  • 七、queue源码
  • 参考

一、简介

queue.h是一个非常经典的文件,定义了一系列宏的操作,它定义了一系列的宏操作,实现了链表,尾队列和循环链表。
queue.h定义了5个基本的数据类型:

  • 单向无尾链表
  • 单向有尾链表
  • 双向无尾链表
  • 双向有尾链表
  • 循环链表

queue相关链表/队列的使用流程为:

  1. 定义自己的结构体
  2. 在结构体中使用XXXX_ENTRY定义链表/队列成员变量
  3. 使用XXXX_HEAD定义一个链表/队列头
  4. 使用XXXX_INIT初始化链表/队列头(也可在定义时初始化)
  5. 使用相关的INSERT、REMOVE、FOREACH、REPLACE方法操作队列

几种类型支持的操作:
在这里插入图片描述

二、SLIST单向无尾链表

2.1 介绍

SLIST是Singly-linked List的缩写,意为单向无尾链表。
在这里插入图片描述
SLIST适合数据量非常大并且几乎不需要删除数据的场合,或者当作堆栈使用。
SLIST相关的源码:

/** Singly-linked List definitions.*/
#define SLIST_HEAD(name, type)                                              \
struct name {                                                               \struct type *slh_first; /* first element */                             \
}#define SLIST_HEAD_INITIALIZER(head)                                        \{ NULL }#define SLIST_ENTRY(type)                                                   \
struct {                                                                    \struct type *sle_next;  /* next element */                              \
}/** Singly-linked List functions.*/
#define SLIST_INIT(head) do {                                               \(head)->slh_first = NULL;                                               \
} while (/*CONSTCOND*/0)#define SLIST_INSERT_AFTER(slistelm, elm, field) do {                       \(elm)->field.sle_next = (slistelm)->field.sle_next;                     \(slistelm)->field.sle_next = (elm);                                     \
} while (/*CONSTCOND*/0)#define SLIST_INSERT_HEAD(head, elm, field) do {                            \(elm)->field.sle_next = (head)->slh_first;                              \(head)->slh_first = (elm);                                              \
} while (/*CONSTCOND*/0)#define SLIST_REMOVE_HEAD(head, field) do {                                 \(head)->slh_first = (head)->slh_first->field.sle_next;                  \
} while (/*CONSTCOND*/0)#define SLIST_REMOVE(head, elm, type, field) do {                           \if ((head)->slh_first == (elm)) {                                       \SLIST_REMOVE_HEAD((head), field);                                   \}                                                                       \else {                                                                  \struct type *curelm = (head)->slh_first;                            \while(curelm->field.sle_next != (elm))                              \curelm = curelm->field.sle_next;                                \curelm->field.sle_next =                                            \curelm->field.sle_next->field.sle_next;                         \}                                                                       \
} while (/*CONSTCOND*/0)#define SLIST_FOREACH(var, head, field)                                     \for ((var) = SLIST_FIRST((head));                                       \(var);                                                              \(var) = SLIST_NEXT((var), field) )#define SLIST_FOREACH_PREVPTR(var, varp, head, field)                       \for ((varp) = &SLIST_FIRST((head));                                     \((var) = *(varp)) != NULL;                                          \(varp) = &SLIST_NEXT((var), field) )/** Singly-linked List access methods.*/
#define SLIST_EMPTY(head)       ((head)->slh_first == NULL)
#define SLIST_FIRST(head)       ((head)->slh_first)
#define SLIST_NEXT(elm, field)  ((elm)->field.sle_next)

2.2 操作

与单向链表相关的宏、方法和函数有:

// definitions
SLIST_HEAD(name, type)
SLIST_HEAD_INITIALIZER(head)
SLIST_ENTRY(type)
// access methods
SLIST_FIRST(head)
SLIST_END(head)
SLIST_EMPTY(head)
SLIST_NEXT(elm, field)
LIST_FOREACH(var, head, field)
SLIST_FOREACH_PREVPTR(var, varp, head, field)
// functions
SLIST_INIT(head)
SLIST_INSERT_AFTER(slistelm, elm, field)
SLIST_INSERT_HEAD(head, elm, field)
SLIST_REMOVE_NEXT(head, elm, field)
SLIST_REMOVE_HEAD(head, field)
SLIST_REMOVE(head, elm, type, field)

宏定义说明

  • SLIST_HEAD用于定义一个单向链表数据结构体的头变量,该结构体只有一个指针成员slh_first,指向第一个type类型的数据结构;name可以不用(填写);
  • SLIST_HEAD_INITIALIZER用于在定义时初始化SLIST_HEAD定义的数据结构体的头变量;head可以不用填写;
  • SLIST_ENTRY则用于定义一个(用户)结构体的成员变量,该成员变量只包含一个指向type类型的指针sle_next;

与单向链表相关的访问方法有6个

  • SLIST_FIRST用于获取单向链表的第一个元素;
  • SLIST_END定义了尾部的判断标准;
  • SLIST_EMPTY用于判断单向链表是否为空:空则返回true,否则返回false;
  • SLIST_NEXT用于获取elm元素的下一个元素,field是前面用SLIST_ENTRY定义的成员变量名;
  • SLIST_FOREACH用于遍历单向链表,var是临时变量,head是链表头指针(SLIST_HEAD定义的变量),field是SLIST_ENTRY定义的成员变量名;
  • SLIST_FOREACH_PREVPTR与SLIST_FOREACH类似,用于遍历单向链表,不过提供更多的一个临时指针变量varp,指向var指向元素的地址;

与单向链表相关的函数有6个

  • SLIST_INIT用于初始化SLIST_HEAD定义的头指针变量;当然也可以在使用SLIST_HEAD定义头指针变量时同时使用SLIST_HEAD_INITIALIZER进行初始化;
  • SLIST_INSERT_AFTER用于将元素elm插入到当前链表元素slistelm的后面;
  • SLIST_INSERT_HEAD用于将元素elm插入到当前链表head的头部;head是SLIST_HEAD定义的链表头指针;
  • SLIST_REMOVE_NEXT用于将elm后面的元素删除,head未使用;注意删除时判断elm后面是否还有元素,否则会崩溃;
  • SLIST_REMOVE_HEAD用于删除第一个元素;注意删除时判断head是否为空,否则会崩溃;
  • SLIST_REMOVE用于从head链表中删除elm元素;注意首先判断elm元素是否在head链表中,否则会崩溃;

2.3 例子

#include <stdio.h>
#include <stdlib.h>
#include "queue.h"struct SLIST_ITEM {int value;SLIST_ENTRY(SLIST_ITEM) entry;
};
int main(void) {int i;SLIST_HEAD(,SLIST_ITEM) slist_head;SLIST_INIT(&slist_head);if (SLIST_EMPTY(&slist_head))printf("single list is empty\n");struct SLIST_ITEM *item;struct SLIST_ITEM *item_temp;for( i = 0; i < 10; i += 1){item = (struct SLIST_ITEM *)malloc(sizeof(struct SLIST_ITEM));item->value = i;item->entry.sle_next = NULL;SLIST_INSERT_HEAD(&slist_head, item, entry);}printf("after insert 10 item to single list:\n");SLIST_FOREACH(item, &slist_head, entry)printf("item value = %d\n", item->value);while( SLIST_EMPTY(&slist_head) == 0 ){item_temp = (&slist_head)->slh_first;SLIST_REMOVE(&slist_head,(&slist_head)->slh_first,SLIST_ITEM,entry);free(item_temp);}printf("here");if ( SLIST_EMPTY(&slist_head) )printf("single list is empty\n");        return 0;
}

在这里插入图片描述

  • SLIST_INSERT_HEAD(&slist_head, item, entry)
    从头部插入元素,第一个参数为头节点,第一个参数为要插入的元素,第三个参数为自定义结构体中,自定义的SLIST_ENTRY(SLIST_ITEM)结构体变量名称。
  • SLIST_REMOVE(&slist_head,(&slist_head)->slh_first,SLIST_ITEM,entry)
    删除对应元素( 内部仅是指针指向的改变,没有真正释放空间 )

三、STAILQ单向有尾链表

STAILQ 是 Singly-linked Tail queue 的缩写,意为单向有尾链表。有尾链表可作队列使用。
在这里插入图片描述
STAILQ相关的源码

/** Singly-linked Tail queue declarations.*/
#define STAILQ_HEAD(name, type)                                             \
struct name {                                                               \struct type *stqh_first;    /* first element */                         \struct type **stqh_last;    /* addr of last next element */             \
}#define STAILQ_HEAD_INITIALIZER(head)                                       \{ NULL, &(head).stqh_first }#define STAILQ_ENTRY(type)                                                  \
struct {                                                                    \struct type *stqe_next; /* next element */                              \
}/** Singly-linked Tail queue functions.*/
#define STAILQ_INIT(head) do {                                              \(head)->stqh_first = NULL;                                              \(head)->stqh_last = &(head)->stqh_first;                                \
} while (/*CONSTCOND*/0)#define STAILQ_INSERT_HEAD(head, elm, field) do {                           \if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)              \(head)->stqh_last = &(elm)->field.stqe_next;                        \(head)->stqh_first = (elm);                                             \
} while (/*CONSTCOND*/0)#define STAILQ_INSERT_TAIL(head, elm, field) do {                           \(elm)->field.stqe_next = NULL;                                          \*(head)->stqh_last = (elm);                                             \(head)->stqh_last = &(elm)->field.stqe_next;                            \
} while (/*CONSTCOND*/0)#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do {                 \if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)      \(head)->stqh_last = &(elm)->field.stqe_next;                        \(listelm)->field.stqe_next = (elm);                                     \
} while (/*CONSTCOND*/0)#define STAILQ_REMOVE_HEAD(head, field) do {                                \if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \(head)->stqh_last = &(head)->stqh_first;                            \
} while (/*CONSTCOND*/0)#define STAILQ_REMOVE(head, elm, type, field) do {                          \if ((head)->stqh_first == (elm)) {                                      \STAILQ_REMOVE_HEAD((head), field);                                  \} else {                                                                \struct type *curelm = (head)->stqh_first;                           \while (curelm->field.stqe_next != (elm))                            \curelm = curelm->field.stqe_next;                               \if ((curelm->field.stqe_next =                                      \curelm->field.stqe_next->field.stqe_next) == NULL)              \(head)->stqh_last = &(curelm)->field.stqe_next;             \}                                                                       \
} while (/*CONSTCOND*/0)#define STAILQ_FOREACH(var, head, field)                                    \for ((var) = ((head)->stqh_first);                                      \(var);                                                              \(var) = ((var)->field.stqe_next))#define STAILQ_CONCAT(head1, head2) do {                                    \if (!STAILQ_EMPTY((head2))) {                                           \*(head1)->stqh_last = (head2)->stqh_first;                          \(head1)->stqh_last = (head2)->stqh_last;                            \STAILQ_INIT((head2));                                               \}                                                                       \
} while (/*CONSTCOND*/0)/** Singly-linked Tail queue access methods.*/
#define STAILQ_EMPTY(head)          ((head)->stqh_first == NULL)
#define STAILQ_FIRST(head)          ((head)->stqh_first)
#define STAILQ_NEXT(elm, field)     ((elm)->field.stqe_next)

四、LIST双向无尾链表

双向链表有前向的指针,因此可以执行一些前向操作,而且无需遍历链表便可以删除一些节点。
在这里插入图片描述
LIST相关的源码

/** List definitions.*/
#define LIST_HEAD(name, type)                                               \
struct name {                                                               \struct type *lh_first;  /* first element */                             \
}#define LIST_HEAD_INITIALIZER(head)                                         \{ NULL }#define LIST_ENTRY(type)                                                    \
struct {                                                                    \struct type *le_next;   /* next element */                              \struct type **le_prev;  /* address of previous next element */          \
}/** List functions.*/
#define LIST_INIT(head) do {                                                \(head)->lh_first = NULL;                                                \
} while (/*CONSTCOND*/0)#define LIST_INSERT_AFTER(listelm, elm, field) do {                         \if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)          \(listelm)->field.le_next->field.le_prev =                           \&(elm)->field.le_next;                                          \(listelm)->field.le_next = (elm);                                       \(elm)->field.le_prev = &(listelm)->field.le_next;                       \
} while (/*CONSTCOND*/0)#define LIST_INSERT_BEFORE(listelm, elm, field) do {                        \(elm)->field.le_prev = (listelm)->field.le_prev;                        \(elm)->field.le_next = (listelm);                                       \*(listelm)->field.le_prev = (elm);                                      \(listelm)->field.le_prev = &(elm)->field.le_next;                       \
} while (/*CONSTCOND*/0)#define LIST_INSERT_HEAD(head, elm, field) do {                             \if (((elm)->field.le_next = (head)->lh_first) != NULL)                  \(head)->lh_first->field.le_prev = &(elm)->field.le_next;            \(head)->lh_first = (elm);                                               \(elm)->field.le_prev = &(head)->lh_first;                               \
} while (/*CONSTCOND*/0)#define LIST_REMOVE(elm, field) do {                                        \if ((elm)->field.le_next != NULL)                                       \(elm)->field.le_next->field.le_prev =                               \(elm)->field.le_prev;                                           \*(elm)->field.le_prev = (elm)->field.le_next;                           \
} while (/*CONSTCOND*/0)#define LIST_FOREACH(var, head, field)                                      \for ((var) = ((head)->lh_first);                                        \(var);                                                              \(var) = ((var)->field.le_next))/** List access methods.*/
#define LIST_EMPTY(head)        ((head)->lh_first == NULL)
#define LIST_FIRST(head)        ((head)->lh_first)
#define LIST_NEXT(elm, field)   ((elm)->field.le_next)

五、TAILQ双向有尾链表

TAILQ 是 Tail queue 的缩写,意为双向有尾链表。
有尾链表可作队列使用。
双向有尾链表兼具了双向链表和有尾链表的特点。
在这里插入图片描述
TAILQ相关的源码

/** Tail queue definitions.*/
#define TAILQ_HEAD(name, type)                                              \
struct name {                                                               \struct type *tqh_first;     /* first element */                         \struct type **tqh_last;     /* addr of last next element */             \
}#define TAILQ_HEAD_INITIALIZER(head)                                        \{ NULL, &(head).tqh_first }#define TAILQ_ENTRY(type)                                                   \
struct {                                                                    \struct type *tqe_next;      /* next element */                          \struct type **tqe_prev;     /* address of previous next element */      \
}/** Tail queue functions.*/
#define TAILQ_INIT(head) do {                                               \(head)->tqh_first = NULL;                                               \(head)->tqh_last = &(head)->tqh_first;                                  \
} while (/*CONSTCOND*/0)#define TAILQ_INSERT_HEAD(head, elm, field) do {                            \if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)                \(head)->tqh_first->field.tqe_prev = &(elm)->field.tqe_next;         \else                                                                    \(head)->tqh_last = &(elm)->field.tqe_next;                          \(head)->tqh_first = (elm);                                              \(elm)->field.tqe_prev = &(head)->tqh_first;                             \
} while (/*CONSTCOND*/0)#define TAILQ_INSERT_TAIL(head, elm, field) do {                            \(elm)->field.tqe_next = NULL;                                           \(elm)->field.tqe_prev = (head)->tqh_last;                               \*(head)->tqh_last = (elm);                                              \(head)->tqh_last = &(elm)->field.tqe_next;                              \
} while (/*CONSTCOND*/0)#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {                  \if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)        \(elm)->field.tqe_next->field.tqe_prev = &(elm)->field.tqe_next;     \else                                                                    \(head)->tqh_last = &(elm)->field.tqe_next;                          \(listelm)->field.tqe_next = (elm);                                      \(elm)->field.tqe_prev = &(listelm)->field.tqe_next;                     \
} while (/*CONSTCOND*/0)#define TAILQ_INSERT_BEFORE(listelm, elm, field) do {                       \(elm)->field.tqe_prev = (listelm)->field.tqe_prev;                      \(elm)->field.tqe_next = (listelm);                                      \*(listelm)->field.tqe_prev = (elm);                                     \(listelm)->field.tqe_prev = &(elm)->field.tqe_next;                     \
} while (/*CONSTCOND*/0)#define TAILQ_REMOVE(head, elm, field) do {                                 \if (((elm)->field.tqe_next) != NULL)                                    \(elm)->field.tqe_next->field.tqe_prev = (elm)->field.tqe_prev;      \else                                                                    \(head)->tqh_last = (elm)->field.tqe_prev;                           \*(elm)->field.tqe_prev = (elm)->field.tqe_next;                         \
} while (/*CONSTCOND*/0)#define TAILQ_FOREACH(var, head, field)                                     \for ((var) = ((head)->tqh_first);                                       \(var);                                                              \(var) = ((var)->field.tqe_next))#define TAILQ_FOREACH_REVERSE(var, head, headname, field)                   \for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));    \(var);                                                              \(var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))#define TAILQ_CONCAT(head1, head2, field) do {                              \if (!TAILQ_EMPTY(head2)) {                                              \*(head1)->tqh_last = (head2)->tqh_first;                            \(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;             \(head1)->tqh_last = (head2)->tqh_last;                              \TAILQ_INIT((head2));                                                \}                                                                       \
} while (/*CONSTCOND*/0)/** Tail queue access methods.*/
#define TAILQ_EMPTY(head)       ((head)->tqh_first == NULL)
#define TAILQ_FIRST(head)       ((head)->tqh_first)
#define TAILQ_NEXT(elm, field)  ((elm)->field.tqe_next)#define TAILQ_LAST(head, headname)                                          \(*(((struct headname *)((head)->tqh_last))->tqh_last))#define TAILQ_PREV(elm, headname, field)                                    \(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))

六、CIRCLEQ循环链表

CIRCLEQ 是 Circular queue 的缩写,意为循环链表。
在这里插入图片描述
CIRCLEQ相关的源码

/** Circular queue definitions.*/
#define CIRCLEQ_HEAD(name, type)                                            \
struct name {                                                               \struct type *cqh_first;     /* first element */                         \struct type *cqh_last;      /* last element */                          \
}#define CIRCLEQ_HEAD_INITIALIZER(head)                                      \{ (void *)&head, (void *)&head }#define CIRCLEQ_ENTRY(type)                                                 \
struct {                                                                    \struct type *cqe_next;      /* next element */                          \struct type *cqe_prev;      /* previous element */                      \
}/** Circular queue functions.*/
#define CIRCLEQ_INIT(head) do {                                             \(head)->cqh_first = (void *)(head);                                     \(head)->cqh_last = (void *)(head);                                      \
} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \(elm)->field.cqe_next = (listelm)->field.cqe_next;                      \(elm)->field.cqe_prev = (listelm);                                      \if ((listelm)->field.cqe_next == (void *)(head))                        \(head)->cqh_last = (elm);                                           \else                                                                    \(listelm)->field.cqe_next->field.cqe_prev = (elm);                  \(listelm)->field.cqe_next = (elm);                                      \
} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {               \(elm)->field.cqe_next = (listelm);                                      \(elm)->field.cqe_prev = (listelm)->field.cqe_prev;                      \if ((listelm)->field.cqe_prev == (void *)(head))                        \(head)->cqh_first = (elm);                                          \else                                                                    \(listelm)->field.cqe_prev->field.cqe_next = (elm);                  \(listelm)->field.cqe_prev = (elm);                                      \
} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_HEAD(head, elm, field) do {                          \(elm)->field.cqe_next = (head)->cqh_first;                              \(elm)->field.cqe_prev = (void *)(head);                                 \if ((head)->cqh_last == (void *)(head))                                 \(head)->cqh_last = (elm);                                           \else                                                                    \(head)->cqh_first->field.cqe_prev = (elm);                          \(head)->cqh_first = (elm);                                              \
} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_TAIL(head, elm, field) do {                          \(elm)->field.cqe_next = (void *)(head);                                 \(elm)->field.cqe_prev = (head)->cqh_last;                               \if ((head)->cqh_first == (void *)(head))                                \(head)->cqh_first = (elm);                                          \else                                                                    \(head)->cqh_last->field.cqe_next = (elm);                           \(head)->cqh_last = (elm);                                               \
} while (/*CONSTCOND*/0)#define CIRCLEQ_REMOVE(head, elm, field) do {                               \if ((elm)->field.cqe_next == (void *)(head))                            \(head)->cqh_last = (elm)->field.cqe_prev;                           \else                                                                    \(elm)->field.cqe_next->field.cqe_prev = (elm)->field.cqe_prev;      \if ((elm)->field.cqe_prev == (void *)(head))                            \(head)->cqh_first = (elm)->field.cqe_next;                          \else                                                                    \(elm)->field.cqe_prev->field.cqe_next = (elm)->field.cqe_next;      \
} while (/*CONSTCOND*/0)#define CIRCLEQ_FOREACH(var, head, field)                                   \for ((var) = ((head)->cqh_first);                                       \(var) != (const void *)(head);                                      \(var) = ((var)->field.cqe_next))#define CIRCLEQ_FOREACH_REVERSE(var, head, field)                           \for ((var) = ((head)->cqh_last);                                        \(var) != (const void *)(head);                                      \(var) = ((var)->field.cqe_prev))/** Circular queue access methods.*/
#define CIRCLEQ_EMPTY(head)         ((head)->cqh_first == (void *)(head))
#define CIRCLEQ_FIRST(head)         ((head)->cqh_first)
#define CIRCLEQ_LAST(head)          ((head)->cqh_last)
#define CIRCLEQ_NEXT(elm, field)    ((elm)->field.cqe_next)
#define CIRCLEQ_PREV(elm, field)    ((elm)->field.cqe_prev)#define CIRCLEQ_LOOP_NEXT(head, elm, field)                                 \(((elm)->field.cqe_next == (void *)(head))                              \? ((head)->cqh_first)                                               \: (elm->field.cqe_next))#define CIRCLEQ_LOOP_PREV(head, elm, field)                                 \(((elm)->field.cqe_prev == (void *)(head))                              \? ((head)->cqh_last)                                                \: (elm->field.cqe_prev))

七、queue源码

在Linux系统中的路径为:/usr/include/sys/queue.h
也可以通过如下网址查看:https://codebrowser.dev/glibc/glibc/misc/sys/queue.h.html
queue.h

/** Copyright (c) 1991, 1993*        The Regents of the University of California.  All rights reserved.** Redistribution and use in source and binary forms, with or without* modification, are permitted provided that the following conditions* are met:* 1. Redistributions of source code must retain the above copyright*    notice, this list of conditions and the following disclaimer.* 2. Redistributions in binary form must reproduce the above copyright*    notice, this list of conditions and the following disclaimer in the*    documentation and/or other materials provided with the distribution.* 3. Neither the name of the University nor the names of its contributors*    may be used to endorse or promote products derived from this software*    without specific prior written permission.** THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF* SUCH DAMAGE.**        @(#)queue.h        8.5 (Berkeley) 8/20/94*/
#ifndef        _QUEUE_H_
#define        _QUEUE_H_
/** This file defines five types of data structures: singly-linked lists,* lists, simple queues, tail queues, and circular queues.** A singly-linked list is headed by a single forward pointer. The* elements are singly linked for minimum space and pointer manipulation* overhead at the expense of O(n) removal for arbitrary elements. New* elements can be added to the list after an existing element or at the* head of the list.  Elements being removed from the head of the list* should use the explicit macro for this purpose for optimum* efficiency. A singly-linked list may only be traversed in the forward* direction.  Singly-linked lists are ideal for applications with large* datasets and few or no removals or for implementing a LIFO queue.** A list is headed by a single forward pointer (or an array of forward* pointers for a hash table header). The elements are doubly linked* so that an arbitrary element can be removed without a need to* traverse the list. New elements can be added to the list before* or after an existing element or at the head of the list. A list* may only be traversed in the forward direction.** A simple queue is headed by a pair of pointers, one the head of the* list and the other to the tail of the list. The elements are singly* linked to save space, so elements can only be removed from the* head of the list. New elements can be added to the list after* an existing element, at the head of the list, or at the end of the* list. A simple queue may only be traversed in the forward direction.** A tail queue is headed by a pair of pointers, one to the head of the* list and the other to the tail of the list. The elements are doubly* linked so that an arbitrary element can be removed without a need to* traverse the list. New elements can be added to the list before or* after an existing element, at the head of the list, or at the end of* the list. A tail queue may be traversed in either direction.** A circle queue is headed by a pair of pointers, one to the head of the* list and the other to the tail of the list. The elements are doubly* linked so that an arbitrary element can be removed without a need to* traverse the list. New elements can be added to the list before or after* an existing element, at the head of the list, or at the end of the list.* A circle queue may be traversed in either direction, but has a more* complex end of list detection.** For details on the use of these macros, see the queue(3) manual page.*/
/** List definitions.*/
#define        LIST_HEAD(name, type)                                                \
struct name {                                                                \struct type *lh_first;        /* first element */                        \
}
#define        LIST_HEAD_INITIALIZER(head)                                        \{ NULL }
#define        LIST_ENTRY(type)                                                \
struct {                                                                \struct type *le_next;        /* next element */                        \struct type **le_prev;        /* address of previous next element */        \
}
/** List functions.*/
#define        LIST_INIT(head) do {                                                \(head)->lh_first = NULL;                                        \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_AFTER(listelm, elm, field) do {                        \if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)        \(listelm)->field.le_next->field.le_prev =                \&(elm)->field.le_next;                                \(listelm)->field.le_next = (elm);                                \(elm)->field.le_prev = &(listelm)->field.le_next;                \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_BEFORE(listelm, elm, field) do {                        \(elm)->field.le_prev = (listelm)->field.le_prev;                \(elm)->field.le_next = (listelm);                                \*(listelm)->field.le_prev = (elm);                                \(listelm)->field.le_prev = &(elm)->field.le_next;                \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_HEAD(head, elm, field) do {                                \if (((elm)->field.le_next = (head)->lh_first) != NULL)                \(head)->lh_first->field.le_prev = &(elm)->field.le_next;\(head)->lh_first = (elm);                                        \(elm)->field.le_prev = &(head)->lh_first;                        \
} while (/*CONSTCOND*/0)
#define        LIST_REMOVE(elm, field) do {                                        \if ((elm)->field.le_next != NULL)                                \(elm)->field.le_next->field.le_prev =                         \(elm)->field.le_prev;                                \*(elm)->field.le_prev = (elm)->field.le_next;                        \
} while (/*CONSTCOND*/0)
#define        LIST_FOREACH(var, head, field)                                        \for ((var) = ((head)->lh_first);                                \(var);                                                        \(var) = ((var)->field.le_next))
/** List access methods.*/
#define        LIST_EMPTY(head)                ((head)->lh_first == NULL)
#define        LIST_FIRST(head)                ((head)->lh_first)
#define        LIST_NEXT(elm, field)                ((elm)->field.le_next)
/** Singly-linked List definitions.*/
#define        SLIST_HEAD(name, type)                                                \
struct name {                                                                \struct type *slh_first;        /* first element */                        \
}
#define        SLIST_HEAD_INITIALIZER(head)                                        \{ NULL }
#define        SLIST_ENTRY(type)                                                \
struct {                                                                \struct type *sle_next;        /* next element */                        \
}
/** Singly-linked List functions.*/
#define        SLIST_INIT(head) do {                                                \(head)->slh_first = NULL;                                        \
} while (/*CONSTCOND*/0)
#define        SLIST_INSERT_AFTER(slistelm, elm, field) do {                        \(elm)->field.sle_next = (slistelm)->field.sle_next;                \(slistelm)->field.sle_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        SLIST_INSERT_HEAD(head, elm, field) do {                        \(elm)->field.sle_next = (head)->slh_first;                        \(head)->slh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        SLIST_REMOVE_HEAD(head, field) do {                                \(head)->slh_first = (head)->slh_first->field.sle_next;                \
} while (/*CONSTCOND*/0)
#define        SLIST_REMOVE(head, elm, type, field) do {                        \if ((head)->slh_first == (elm)) {                                \SLIST_REMOVE_HEAD((head), field);                        \}                                                                \else {                                                                \struct type *curelm = (head)->slh_first;                \while(curelm->field.sle_next != (elm))                        \curelm = curelm->field.sle_next;                \curelm->field.sle_next =                                \curelm->field.sle_next->field.sle_next;                \}                                                                \
} while (/*CONSTCOND*/0)
#define        SLIST_FOREACH(var, head, field)                                        \for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
/** Singly-linked List access methods.*/
#define        SLIST_EMPTY(head)        ((head)->slh_first == NULL)
#define        SLIST_FIRST(head)        ((head)->slh_first)
#define        SLIST_NEXT(elm, field)        ((elm)->field.sle_next)
/** Singly-linked Tail queue declarations.*/
#define        STAILQ_HEAD(name, type)                                        \
struct name {                                                                \struct type *stqh_first;        /* first element */                        \struct type **stqh_last;        /* addr of last next element */                \
}
#define        STAILQ_HEAD_INITIALIZER(head)                                        \{ NULL, &(head).stqh_first }
#define        STAILQ_ENTRY(type)                                                \
struct {                                                                \struct type *stqe_next;        /* next element */                        \
}
/** Singly-linked Tail queue functions.*/
#define        STAILQ_INIT(head) do {                                                \(head)->stqh_first = NULL;                                        \(head)->stqh_last = &(head)->stqh_first;                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_HEAD(head, elm, field) do {                        \if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)        \(head)->stqh_last = &(elm)->field.stqe_next;                \(head)->stqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_TAIL(head, elm, field) do {                        \(elm)->field.stqe_next = NULL;                                        \*(head)->stqh_last = (elm);                                        \(head)->stqh_last = &(elm)->field.stqe_next;                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_AFTER(head, listelm, elm, field) do {                \if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\(head)->stqh_last = &(elm)->field.stqe_next;                \(listelm)->field.stqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_REMOVE_HEAD(head, field) do {                                \if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \(head)->stqh_last = &(head)->stqh_first;                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_REMOVE(head, elm, type, field) do {                        \if ((head)->stqh_first == (elm)) {                                \STAILQ_REMOVE_HEAD((head), field);                        \} else {                                                        \struct type *curelm = (head)->stqh_first;                \while (curelm->field.stqe_next != (elm))                        \curelm = curelm->field.stqe_next;                \if ((curelm->field.stqe_next =                                \curelm->field.stqe_next->field.stqe_next) == NULL) \(head)->stqh_last = &(curelm)->field.stqe_next; \}                                                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_FOREACH(var, head, field)                                \for ((var) = ((head)->stqh_first);                                \(var);                                                        \(var) = ((var)->field.stqe_next))
#define        STAILQ_CONCAT(head1, head2) do {                                \if (!STAILQ_EMPTY((head2))) {                                        \*(head1)->stqh_last = (head2)->stqh_first;                \(head1)->stqh_last = (head2)->stqh_last;                \STAILQ_INIT((head2));                                        \}                                                                \
} while (/*CONSTCOND*/0)
/** Singly-linked Tail queue access methods.*/
#define        STAILQ_EMPTY(head)        ((head)->stqh_first == NULL)
#define        STAILQ_FIRST(head)        ((head)->stqh_first)
#define        STAILQ_NEXT(elm, field)        ((elm)->field.stqe_next)
/** Simple queue definitions.*/
#define        SIMPLEQ_HEAD(name, type)                                        \
struct name {                                                                \struct type *sqh_first;        /* first element */                        \struct type **sqh_last;        /* addr of last next element */                \
}
#define        SIMPLEQ_HEAD_INITIALIZER(head)                                        \{ NULL, &(head).sqh_first }
#define        SIMPLEQ_ENTRY(type)                                                \
struct {                                                                \struct type *sqe_next;        /* next element */                        \
}
/** Simple queue functions.*/
#define        SIMPLEQ_INIT(head) do {                                                \(head)->sqh_first = NULL;                                        \(head)->sqh_last = &(head)->sqh_first;                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_HEAD(head, elm, field) do {                        \if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)        \(head)->sqh_last = &(elm)->field.sqe_next;                \(head)->sqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_TAIL(head, elm, field) do {                        \(elm)->field.sqe_next = NULL;                                        \*(head)->sqh_last = (elm);                                        \(head)->sqh_last = &(elm)->field.sqe_next;                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\(head)->sqh_last = &(elm)->field.sqe_next;                \(listelm)->field.sqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_REMOVE_HEAD(head, field) do {                                \if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \(head)->sqh_last = &(head)->sqh_first;                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_REMOVE(head, elm, type, field) do {                        \if ((head)->sqh_first == (elm)) {                                \SIMPLEQ_REMOVE_HEAD((head), field);                        \} else {                                                        \struct type *curelm = (head)->sqh_first;                \while (curelm->field.sqe_next != (elm))                        \curelm = curelm->field.sqe_next;                \if ((curelm->field.sqe_next =                                \curelm->field.sqe_next->field.sqe_next) == NULL) \(head)->sqh_last = &(curelm)->field.sqe_next; \}                                                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_FOREACH(var, head, field)                                \for ((var) = ((head)->sqh_first);                                \(var);                                                        \(var) = ((var)->field.sqe_next))
/** Simple queue access methods.*/
#define        SIMPLEQ_EMPTY(head)                ((head)->sqh_first == NULL)
#define        SIMPLEQ_FIRST(head)                ((head)->sqh_first)
#define        SIMPLEQ_NEXT(elm, field)        ((elm)->field.sqe_next)
/** Tail queue definitions.*/
#define        _TAILQ_HEAD(name, type, qual)                                        \
struct name {                                                                \qual type *tqh_first;                /* first element */                \qual type *qual *tqh_last;        /* addr of last next element */        \
}
#define TAILQ_HEAD(name, type)        _TAILQ_HEAD(name, struct type,)
#define        TAILQ_HEAD_INITIALIZER(head)                                        \{ NULL, &(head).tqh_first }
#define        _TAILQ_ENTRY(type, qual)                                        \
struct {                                                                \qual type *tqe_next;                /* next element */                \qual type *qual *tqe_prev;        /* address of previous next element */\
}
#define TAILQ_ENTRY(type)        _TAILQ_ENTRY(struct type,)
/** Tail queue functions.*/
#define        TAILQ_INIT(head) do {                                                \(head)->tqh_first = NULL;                                        \(head)->tqh_last = &(head)->tqh_first;                                \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_HEAD(head, elm, field) do {                        \if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)        \(head)->tqh_first->field.tqe_prev =                        \&(elm)->field.tqe_next;                                \else                                                                \(head)->tqh_last = &(elm)->field.tqe_next;                \(head)->tqh_first = (elm);                                        \(elm)->field.tqe_prev = &(head)->tqh_first;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_TAIL(head, elm, field) do {                        \(elm)->field.tqe_next = NULL;                                        \(elm)->field.tqe_prev = (head)->tqh_last;                        \*(head)->tqh_last = (elm);                                        \(head)->tqh_last = &(elm)->field.tqe_next;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_AFTER(head, listelm, elm, field) do {                \if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\(elm)->field.tqe_next->field.tqe_prev =                 \&(elm)->field.tqe_next;                                \else                                                                \(head)->tqh_last = &(elm)->field.tqe_next;                \(listelm)->field.tqe_next = (elm);                                \(elm)->field.tqe_prev = &(listelm)->field.tqe_next;                \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_BEFORE(listelm, elm, field) do {                        \(elm)->field.tqe_prev = (listelm)->field.tqe_prev;                \(elm)->field.tqe_next = (listelm);                                \*(listelm)->field.tqe_prev = (elm);                                \(listelm)->field.tqe_prev = &(elm)->field.tqe_next;                \
} while (/*CONSTCOND*/0)
#define        TAILQ_REMOVE(head, elm, field) do {                                \if (((elm)->field.tqe_next) != NULL)                                \(elm)->field.tqe_next->field.tqe_prev =                 \(elm)->field.tqe_prev;                                \else                                                                \(head)->tqh_last = (elm)->field.tqe_prev;                \*(elm)->field.tqe_prev = (elm)->field.tqe_next;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_FOREACH(var, head, field)                                        \for ((var) = ((head)->tqh_first);                                \(var);                                                        \(var) = ((var)->field.tqe_next))
#define        TAILQ_FOREACH_REVERSE(var, head, headname, field)                \for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));        \(var);                                                        \(var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
#define        TAILQ_CONCAT(head1, head2, field) do {                                \if (!TAILQ_EMPTY(head2)) {                                        \*(head1)->tqh_last = (head2)->tqh_first;                \(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;        \(head1)->tqh_last = (head2)->tqh_last;                        \TAILQ_INIT((head2));                                        \}                                                                \
} while (/*CONSTCOND*/0)
/** Tail queue access methods.*/
#define        TAILQ_EMPTY(head)                ((head)->tqh_first == NULL)
#define        TAILQ_FIRST(head)                ((head)->tqh_first)
#define        TAILQ_NEXT(elm, field)                ((elm)->field.tqe_next)
#define        TAILQ_LAST(head, headname) \(*(((struct headname *)((head)->tqh_last))->tqh_last))
#define        TAILQ_PREV(elm, headname, field) \(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
/** Circular queue definitions.*/
#define        CIRCLEQ_HEAD(name, type)                                        \
struct name {                                                                \struct type *cqh_first;                /* first element */                \struct type *cqh_last;                /* last element */                \
}
#define        CIRCLEQ_HEAD_INITIALIZER(head)                                        \{ (void *)&head, (void *)&head }
#define        CIRCLEQ_ENTRY(type)                                                \
struct {                                                                \struct type *cqe_next;                /* next element */                \struct type *cqe_prev;                /* previous element */                \
}
/** Circular queue functions.*/
#define        CIRCLEQ_INIT(head) do {                                                \(head)->cqh_first = (void *)(head);                                \(head)->cqh_last = (void *)(head);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \(elm)->field.cqe_next = (listelm)->field.cqe_next;                \(elm)->field.cqe_prev = (listelm);                                \if ((listelm)->field.cqe_next == (void *)(head))                \(head)->cqh_last = (elm);                                \else                                                                \(listelm)->field.cqe_next->field.cqe_prev = (elm);        \(listelm)->field.cqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {                \(elm)->field.cqe_next = (listelm);                                \(elm)->field.cqe_prev = (listelm)->field.cqe_prev;                \if ((listelm)->field.cqe_prev == (void *)(head))                \(head)->cqh_first = (elm);                                \else                                                                \(listelm)->field.cqe_prev->field.cqe_next = (elm);        \(listelm)->field.cqe_prev = (elm);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_HEAD(head, elm, field) do {                        \(elm)->field.cqe_next = (head)->cqh_first;                        \(elm)->field.cqe_prev = (void *)(head);                                \if ((head)->cqh_last == (void *)(head))                                \(head)->cqh_last = (elm);                                \else                                                                \(head)->cqh_first->field.cqe_prev = (elm);                \(head)->cqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_TAIL(head, elm, field) do {                        \(elm)->field.cqe_next = (void *)(head);                                \(elm)->field.cqe_prev = (head)->cqh_last;                        \if ((head)->cqh_first == (void *)(head))                        \(head)->cqh_first = (elm);                                \else                                                                \(head)->cqh_last->field.cqe_next = (elm);                \(head)->cqh_last = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_REMOVE(head, elm, field) do {                                \if ((elm)->field.cqe_next == (void *)(head))                        \(head)->cqh_last = (elm)->field.cqe_prev;                \else                                                                \(elm)->field.cqe_next->field.cqe_prev =                        \(elm)->field.cqe_prev;                                \if ((elm)->field.cqe_prev == (void *)(head))                        \(head)->cqh_first = (elm)->field.cqe_next;                \else                                                                \(elm)->field.cqe_prev->field.cqe_next =                        \(elm)->field.cqe_next;                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_FOREACH(var, head, field)                                \for ((var) = ((head)->cqh_first);                                \(var) != (const void *)(head);                                \(var) = ((var)->field.cqe_next))
#define        CIRCLEQ_FOREACH_REVERSE(var, head, field)                        \for ((var) = ((head)->cqh_last);                                \(var) != (const void *)(head);                                \(var) = ((var)->field.cqe_prev))
/** Circular queue access methods.*/
#define        CIRCLEQ_EMPTY(head)                ((head)->cqh_first == (void *)(head))
#define        CIRCLEQ_FIRST(head)                ((head)->cqh_first)
#define        CIRCLEQ_LAST(head)                ((head)->cqh_last)
#define        CIRCLEQ_NEXT(elm, field)        ((elm)->field.cqe_next)
#define        CIRCLEQ_PREV(elm, field)        ((elm)->field.cqe_prev)
#define CIRCLEQ_LOOP_NEXT(head, elm, field)                                \(((elm)->field.cqe_next == (void *)(head))                        \? ((head)->cqh_first)                                        \: (elm->field.cqe_next))
#define CIRCLEQ_LOOP_PREV(head, elm, field)                                \(((elm)->field.cqe_prev == (void *)(head))                        \? ((head)->cqh_last)                                        \: (elm->field.cqe_prev))
#endif        /* sys/queue.h */

参考

  1. https://www.codeleading.com/article/52881355491/
  2. https://blog.csdn.net/tissar/article/details/86978743

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2813811.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

MWC 2024丨美格智能推出5G RedCap系列FWA解决方案,开启5G轻量化新天地

2月27日&#xff0c;在MWC 2024世界移动通信大会上&#xff0c;美格智能正式推出5G RedCap系列FWA解决方案。此系列解决方案具有低功耗、低成本等优势&#xff0c;可以显著降低5G应用复杂度&#xff0c;快速实现5G网络接入&#xff0c;提升FWA部署的经济效益。 RedCap技术带来了…

leetcode 2.27

leetcode hot 100 哈希1.字母异位词分组2.最长连续序列 双指针1.盛最多水的容器2.和为 K 的子数组 数组1.除自身以外数组的乘积 哈希 1.字母异位词分组 49. 字母异位词分组 方法一&#xff1a;排序 由于互为字母异位词的两个字符串包含的字母相同&#xff0c;因此对两个字符…

Python入门到精通(九)——Python数据可视化

Python数据可视化 一、JSON数据格式 1、定义 2、python数据和JSON数据转换 二、pyecharts 三、折线图 四、地图 五、动态柱状图 一、JSON数据格式 1、定义 JSON是一种轻量级的数据交互格式。可以按照JSON指定的格式去组织和封装数据JSON本质上是一个带有特定格式的字符…

vue项目从后端下载文件显示进度条或者loading

//API接口 export const exportDownload (params?: Object, peCallback?: Function) > {return new Promise((resolve, reject) > {axios({method: get,url: ,headers: {access_token: ${getToken()},},responseType: blob,params,onDownloadProgress: (pe) > {peC…

数据结构2月21日

双向链表: func函数&#xff1a; #include <stdio.h> #include <stdlib.h> …

数据分析-Pandas数据探查初步:离散点图

数据分析-Pandas数据探查初步&#xff1a;离散点图 数据分析和处理中&#xff0c;难免会遇到各种数据&#xff0c;那么数据呈现怎样的规律呢&#xff1f;不管金融数据&#xff0c;风控数据&#xff0c;营销数据等等&#xff0c;莫不如此。如何通过图示展示数据的规律&#xff…

若依前后端分离版开源项目学习

前言&#xff1a;vscode中vue代码没有高亮显示&#xff0c;可以下载vetur插件解决&#xff0c;ctrl点击无法跳转函数定义问题&#xff0c;可以下载vue-helper插件解决&#xff1b;idea中ctrl点击函数即可跳转函数定义。 一、登录 1.生成验证码 基本思路&#xff1a; 后端生…

基于HT32的智能家居demo(蓝牙上位机)

参加合泰杯作品的部分展示&#xff0c;基于HT32的智能家居&#xff0c;这里展示灯光的相关控制&#xff0c;是用蓝牙进行的数据透传&#xff0c;参考了一些资料&#xff0c;美化封装了一下之前的上位机界面。 成果展示 点击主界面的蓝牙设置&#xff0c;进行连接&#xff0c;下…

【推荐算法系列六】WideDeep模型

文章目录 参考资料 模型结构模型的记忆能力模型的泛化能力问题 参考资料 见微知著&#xff0c;你真的搞懂Google的Wide&Deep模型了吗&#xff1f;keras实现的代码参考 模型结构 它是由左侧的 Wide 部分和右侧的 Deep 部分组成的。Wide 部分的结构太简单了&#xff0c;就是…

Eslint在Vscode中使用技巧的相关技巧

ps :该文章会详细结论构建一个脚手架遇到的问题&#xff0c;会持续更新&#xff0c;请定时查看 Eslint相关​ 在vscode中使用eslint插件 在vscode中用户配置没有开启eslint.enable 在vscode中工作区配置开启eslint.enable settings.json中没有做eslint相关配置 在编写的vue…

Jenkins参数化构建项目(Git+docker部署+Python+flask项目)

目录 一、概述二、环境三、部署流程3.1 gitee上传代码3.2 jenkins配置3.2.1 Gitee配置3.2.2 SSH配置3.2.3 新建任务 3.3 执行过程3.3.1初始化构建3.3.2 重新提交代码构建 一、概述 使用Jenkins进行CI/CD自动化部署&#xff0c;参数化构建Git代码拉取&#xff0c;docker镜像打包…

开创5G无线新应用:笙科电子5.8GHz 射频芯片

笙科电子(AMICCOM) 5.8GHz A5133射频芯片是一款专门设计用于在5.8GHz频率范围内&#xff08;5725MHz - 5850MHz)进行射频信号处理的集成电路。这些集成电路通常包括各种功能模块&#xff0c;如射频前端、混合器、功率放大器、局部振荡器等&#xff0c;以支持无线通信系统的各种…

3D可视化项目,选择unity3D还是three.js,是时候挑明了。

2023-08-10 23:07贝格前端工场 Hi&#xff0c;我是贝格前端工场&#xff0c;在开发3D可视化项目中&#xff0c;是选择U3D还是three,js时&#xff0c;很多老铁非常的迷茫&#xff0c;本文给老铁们讲清楚该如何选择&#xff0c;欢迎点赞评论分享转发。 一、Unity3D和three.js简…

Android Activity启动模式

文章目录 Android Activity启动模式概述四种启动模式Intent标记二者区别 Android Activity启动模式 概述 Activity 的管理方式是任务栈。栈是先进后出的结构。 四种启动模式 启动模式说明适用场景standard标准模式默认模式&#xff0c;每次启动Activity都会创建一个新的Act…

10W 音频功率放大电路芯片TDA2003,可用于汽车收音机及收录机中作音频功率放大器,内部具有短路保护和过热保护等功能

TDA2003 用于汽车收音机及收录机中作音频功率放大器。 采用 TO220B5 封装形式。 主要特点&#xff1a; ⚫ 内部具有短路保护和过热保护。内部具有地线开路、电源极性接 反和负载泄放电压反冲等保护电路。 ⚫ 输出电流大。 ⚫ 负载电阻可低至 1.6 。 …

Linux:Ansible的常用模块

模块帮助 ansible-doc -l 列出ansible的模块 ansible-doc 模块名称 # 查看指定模块的教程 ansible-doc command 查看command模块的教程 退出教程时候建议不要使用ctrlc 停止&#xff0c;某些shell工具会出现错误 command ansible默认的模块,执行命令&#xff0c;注意&#x…

ARM系列 -- 虚拟化(一)

今天来研究一个有意思的话题&#xff0c;虚拟化&#xff08;virtualization&#xff09;。 开始前&#xff0c;先闲扯一下&#xff0c;最近一个词比较火&#xff0c;“元宇宙&#xff08;Metaverse&#xff09;”。在维基百科里面是这么定义元宇宙的&#xff0c;“The Metaver…

web学习笔记(二十一)

目录 1.构造函数创建对象 1.1规则 1.2 new关键字调用构造函数时&#xff0c;函数内部做了什么事情&#xff1f; 1.3总结 2.混合模式创建对象 3.JavaScript 继承---借助构造函数 4.原型链 1.构造函数创建对象 1.1规则 &#xff08;1&#xff09;构造函数----函数名的首字…

微信小程序page组成部分分析与创建page方法演示

上文 简单讲解并梳理微信小程序默认几个文件和文件夹结构及其作用 我们简述了整个小程序创建之初 几个模块与文件的作用 其中 我们说过 pages 就是放我们所有page界面的 它所有page模块 都是分为四个文件 其中 js 其中包括 页面逻辑 响应式数据 函数 json 文件&#xff0c;界…

DVWA 靶场之 Command Injection(命令执行)middlehigh

对于 middle 难度的 我们直接先看源码 <?phpif( isset( $_POST[ Submit ] ) ) {// Get input$target $_REQUEST[ ip ];// Set blacklist$substitutions array(&& > ,; > ,);// Remove any of the characters in the array (blacklist).$target str_rep…