数学建模【相关性模型】

一、相关性模型简介

相关性模型并不是指一个具体的模型,而是一类模型,这一类模型用来判断变量之间是否具有相关性。一般来说,分析两个变量之间是否具有相关性,我们根据数据服从的分布和数据所具有的特点选择使用pearson(皮尔逊)相关系数和spearman(斯皮尔曼)等级相关系数;分析两组变量,每组变量都有多个指标的时候,无论是pearson相关系数还是spearman等级相关系数都无能为力,所以又要介绍一个新的典型相关分析来解决这个问题。

二、适用赛题

显而易见,这些相关性模型适用于探究变量之间的关系,帮助了解它们是否存在相关性,以及相关性的强度和方向。

三、模型流程

四、流程分析

因为整个流程包含三个模型,所以会以pearson相关系数,spearman等级相关系数,典型相关分析的顺序来讲解。

注:本篇存在大量的概率论与数理统计的知识,这里并不对其中出现的知识、定理等作概念说明和详细证明

1.pearson相关系数

可以从流程图看到,应用pearson相关系数条件还是比较苛刻的。首先得是两个变量之间,其次这两个变量的数据还要服从正态分布。其实应用pearson相关系数的条件还不止,后面会全部介绍。

①正态分布检验

为什么要正态分布检验?

  • 第一,实验数据通常假设是成对的来自于正态分布的总体。因为我们在求pearson相关系数以后,通常还会用t检验之类的方法来进行皮尔逊相关系数检验,而t检验是基于数据呈正态分布的假设的
  • 第二,实验数据之间的差距不能太大。皮尔逊相关性系数受异常值的影响比较大
  • 第三,每组样本之间是独立抽样的。构造t统计量时需要用到
Ⅰ正态分布JB检验(大样本 n > 30)

雅克-贝拉检验(Jarque-Bera test)

这是原理,但是在MATLAB中,代码很简单

注:有些地方正态分布峰度为0,MATLAB中是3

skewness(x) % 偏度
kurtosis(x) % 峰度

可以用这两句查询数据的偏度和峰度

MATLAB中进行JB检验的语法:

[h, p] = jbtest(x, alpha);

当输出h等于1时,表示拒绝原假设;h等于0则代表不能拒绝原假设。alpha就是显著性水平,一般取0.05, 此时置信水平为1 - 0.05 = 0.95。x就是我们要检验的随机变量,注意这里的x只能是向量。

ⅡShapiro-wilk检验(小样本 3 ≤ n ≤ 50)

Shapiro-wilk 夏皮洛-威尔克检验

此操作一般在SPSS软件上进行。

②计算相关系数

pearson相关系数的原理在概率论课本上有,无论是总体还是样本。这里给出MATLAB中如何求

R = corrcoef(A) % 返回A的相关系数的矩阵,其中A的列表示随机变量(指标),行表示观测值(样本)
R = corrcoef(A, B) % 返回两个随机变量A和B (两个向量) 之间的系数

关于pearson相关系数的总结

  •  如果两个变量本身就是线性的关系,那么pearson相关系数绝对值大的就是相关性强,小的就是相关性弱
  • 在不确定两个变量是什么关系的情况下,即使算出pearson相关系数,发现很大,也不能说明那两个变量线性相关,甚至不能说它们相关,我们一定要画出散点图来看才行
③假设检验

事实上,比起相关系数的大小,我们往往更关注的是显著性(假设检验)

原理这里不再给出,证明过于复杂。

这里用更好的方法:p值判断法

一行代码得到p值

[R, P] = corrcoef(test);

R返回的是相关系数表,P返回的是对应于每个相关系数的p值

注:拒绝原假设意味着pearson相关系数显著的异于0

2.spearman等级相关系数

pearson相关系数不能用,就使用spearman等级相关系数。鉴于pearson相关系数中已经介绍过正态分布检验,这里不在重复。

①计算相关系数

注:如果有的数值相同,则将它们所在的位置取算术平均。

举个例子:

在MATLAB中,代码也是很简单

coeff = corr(X, Y, 'type', 'Spearman'); % 这里的X和Y必须是列向量
coeff = corr(x, 'type', 'Spearman'); % 这时计算X矩阵各列之间的spearman相关系数
②假设检验
Ⅰ小样本情况(n ≤ 30)

直接查临界值表即可


n

单尾检验的显著水平

.05

.025

.01

.005

双尾检验的显著水平

.10

.05

.02

.01

4

1.000

5

0.900

1.000

1.000

6

0.829

0.886

0.943

1.000

7

0.714

0.786

0.893

0.929

8

0.643

0.738

0.833

0.881

9

0.600

0.700

0.783

0.833

10

0.564

0.648

0.745

0.794

11

0.536

0.618

0.709

0.755

12

0.503

0.587

0.671

0.727

13

0.484

0.560

0.648

0.703

14

0.464

0.538

0.622

0.675

15

0.443

0.521

0.604

0.654

16

0.429

0.503

0.582

0.635

17

0.414

0.485

0.566

0.615

18

0.401

0.472

0.550

0.600

19

0.391

0.460

0.535

0.584

20

0.380

0.447

0.520

0.570

21

0.370

0.435

0.508

0.556

22

0.361

0.425

0.496

0.544

23

0.353

0.415

0.486

0.532

24

0.344

0.406

0.476

0.521

25

0.337

0.398

0.466

0.511

26

0.331

0.390

0.457

0.501

27

0.324

0.382

0.448

0.491

28

0.317

0.375

0.440

0.483

29

0.312

0.368

0.433

0.475

30

0.306

0.362

0.425

0.467

35

0.283

0.335

0.394

0.433

40

0.264

0.313

0.368

0.405

45

0.248

0.294

0.347

0.382

50

0.235

0.279

0.329

0.363

60

0.214

0.255

0.300

0.331

70

0.190

0.235

0.278

0.307

80

0.185

0.220

0.260

0.287

90

0.174

0.207

0.245

0.271

100

0.165

0.197

0.233

0.257

注:样本相关系数r必须大于等于表中的临界值,才能得出显著的结论。

Ⅱ大样本情况

依旧是选择更好用的p值检验法

[R, P] = corr(test, 'type', 'Spearman'); % 直接给出相关系数和p值

这里和p值和pearson相关系数假设检验那里的p值解释相同。

3.pearson相关系数和spearman等级相关系数选择
  • 连续数据,正态分布,线性关系,用pearson相关系数是最恰当,当然用spearman等级相关系数也可以,就是效率没有pearson相关系数高
  • 上述任一条件不满足,就用spearman等级相关系数,不能用pearson相关系数
  • 两个定序数据之间也用spearman等级相关系数,不能用pearson相关系数

定序数据是指仅仅反映观测对象等级、顺序关系的数据,是由定序尺度计量形成的,表现为类别,可以进行排序,属于品质数据。

例如:优、良、差;我们可以用1表示差、2表示良、3表示优,但请注意,用2除以1得出的2并不代表任何含义。定序数据最重要的意义代表了- -组数据中的某种逻辑顺序。

注:斯皮尔曼相关系数的适用条件比皮尔逊相关系数要广,只要数据满足单调关系(例如线性函数、指数函数、对数函数等)就能够使用。

4.典型相关分析

声明:对于典型相关分析,其中原理、证明过于复杂,本篇不作涉及,只介绍得出结果的流程。

基本思想

典型相关分析由Hotelling提出,其基本思想和主成分分析非常相似。首先在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。然后选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此继续下去,直到两组变量之间的相关性被提取完毕为此。被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。典型相关系数度量了这两组变量之间联系的强度。

①矩阵标准化变换

矩阵的准化变换属于线性代数的知识,这里介绍为什么要对矩阵进行标准化变化的操作

  • 典型相关分析涉及多个变量,不同的变量往往具有不同的量纲及不同的数量级别。在进行典型相关分析时,由于典型变量是原始变量的线性组合,具有不同量纲变量的线性组合显然失去了实际意义
  • 其次,不同的数量级别会导致“以大吃小”,即数量级别小的变量的影响会被忽略,从而影响了分析结果的合理性
  • 因此,为了消除量纲和数量级别的影响,必须对数据先做标准化变换处理,然后再做典型相关分析
②求解

再看过第一步之后肯定是一头雾水,矩阵是哪里来的?这里对典型相关分析中的变量做一些介绍

规定有

第一步的矩阵标准化就是对这四个矩阵进行操作

这里以一组数据为例子

康复俱乐部对20名中年人测量了三个生理指标:体重(x1),腰围(x2),脉搏(x3);三个训练指标:引体向上次数(y1),起坐次数(y2),跳跃次数(y3)。分析生理指标与训练指标的相关性。

根据数据可得

在标准化之后,矩阵用R表示

设置A和B

这里A和B的特征值是相同的

则可得

每一个a和b都是对应的特征向量,在这里也就是典型相关系数

第二对和第三对也是如此。

③假设检验

对于每一对典型变量进行计算

④典型载荷分析

进行典型载荷分析有助于更好解释分析已提取的p对典型变量。所谓的典型载荷分析是指原始变量与典型变量之间相关性分析。

⑤典型冗余分析

5.补充

可以看见,典型相关分析过于复杂,不过可以利用SPSS软件完成对数据相关性的分析,包括pearson相关系数和spearman等级相关系数。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2812892.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

分布式ID生成方案详解

✨✨ 祝屏幕前的您天天开心 ,每天都有好运相伴。我们一起加油!✨✨ 🎈🎈作者主页: 喔的嘛呀🎈🎈 目录 引言 一. UUID(Universally …

开发者利器: 从 Amazon CodeWhisperer 到 Amazon Q

自 ChatGPT 火爆以来,生成式 AI 助手也是层出不穷,目前自然是以 Microsoft Copilot(基于 GPT)普及度最高了吧。看着微软风光了这么久,其他云厂商怎么可能会甘愿落后? 最近,来自亚马逊云科技的 …

阿里云国际云解析DNS如何开启/关闭流量分析?

流量分析服务会涉及产生日志费用,所以开通内网DNS解析服务后,默认不会主动开启流量分析,需要您手动开启流量分析。对于未开启流量分析的用户,进入界面会提示您展示的都是模拟数据,您可以点击开启流量分析服务&#xff…

B站项目-基于Pytorch的ResNet垃圾图片分类

基于Pytorch的ResNet垃圾图片分类 项目链接 数据集下载链接 1. 数据集预处理 1.1 画图片的宽高分布散点图 import osimport matplotlib.pyplot as plt import PIL.Image as Imagedef plot_resolution(dataset_root_path):image_size_list []#存放图片尺寸for root, dirs, fi…

实验室储样瓶耐强酸强碱PFA材质试剂瓶适用新材料半导体

PFA,全名可溶性聚四氟乙烯,试剂瓶又叫取样瓶、样品瓶、广口瓶、储样瓶等。主要用于痕量分析、同位素分析等实验室,广泛应用于新兴的半导体、新材料、多晶硅、硅材、微电子等行业。 规格参考:30ml、60ml、100ml、125ml、250ml、30…

使用keil移植freerots简结

1.安装keil 5.0 2.安装 keil device 软件包:具体单片机软件包下载地址: Arm Keil | Deviceshttps://www.keil.arm.com/devices/ ,选择自己单片机所属型号.下载后导入即可. 3.新建工程时选择对应device: 选择CMISIS的CORE即可.其…

ABBYY FineReader16文档转换、PDF管理与文档比较功能介绍

ABBYY FineReader 16作为一款OCR和PDF一体化程序,其强大的功能使得文档处理变得简单高效。在众多功能中,文档转换、PDF管理和文档比较这三大功能尤为突出,成为了众多企业和个人用户的首选工具。 ABBYY Finereader 16-安装包下载如下&#xff…

kafka学习笔记三

第二篇 外部系统集成 Flume、Spark、Flink、SpringBoot 这些组件都可以作为kafka的生产者和消费者,在企业中非常常见。 Flume官网:Welcome to Apache Flume — Apache Flume Flink:Apache Flink_百度百科 Spark:Apache Spark…

openEuler2203 LTS环境下docker容器的配置与应用

一、说明 本文配置环境为VMware虚拟机(4核CPU,8 GB内存,40GB磁盘),OS为openEuler 22.03 LTS ,虚拟机要求能联网。 二、安装docker 1、安装docker软件包 [rootnode1 ~]# dnf -y install docker2、查看do…

高性能API云原生网关 APISIX安装与配置指南

Apache APISIX是Apache软件基金会下的顶级项目,由API7.ai开发并捐赠。它是一个高性能的云原生API网关,具有动态、实时等特点。 APISIX网关可作为所有业务的流量入口,为用户提供了丰富的功能,包括动态路由、动态上游、动态证书、A…

autocrlf和safecrlf

git远程拉取及提交代码,windows和linux平台换行符转换问题,用以下两行命令进行配置: git config --global core.autocrlf false git config --global core.safecrlf true CRLF是windows平台下的换行符,LF是linux平台下的换行符。…

SpringBoot源码解读与原理分析(三十三)SpringBoot整合JDBC(二)声明式事务的生效原理和控制流程

文章目录 前言10.3 声明式事务的生效原理10.3.1 TransactionAutoConfiguration10.3.2 TransactionManagementConfigurationSelector10.3.3 AutoProxyRegistrar10.3.4 InfrastructureAdvisorAutoProxyCreator10.3.5 ProxyTransactionManagementConfiguration10.3.5.1 Transactio…

基于springboot+vue的抗疫物资管理系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

C 嵌入式系统设计模式 12:去抖动模式

本书的原著为:《Design Patterns for Embedded Systems in C ——An Embedded Software Engineering Toolkit 》,讲解的是嵌入式系统设计模式,是一本不可多得的好书。 本系列描述我对书中内容的理解。本文章描述访问硬件的设计模式之五&…

(undone) 如何计算 Hessian Matrix 海森矩阵 海塞矩阵

参考视频1:https://www.bilibili.com/video/BV1H64y1T7zQ/?spm_id_from333.337.search-card.all.click 参考视频2(正定矩阵):https://www.bilibili.com/video/BV1Ag411M76G/?spm_id_from333.337.search-card.all.click&vd_…

【Datawhale组队学习:Sora原理与技术实战】Sora技术原理

Sora能力边界探索 最大支持60秒高清视频生成,以及基于已有短视频的前后扩展,同时保持人物/场景的高度一致性如奶茶般丝滑过渡的视频融合能力同一场景的多角度/镜头的生成能力具有动态摄像机运动的视频。随着摄像机的移动和旋转,人和其 他场景…

SpaceX 首次通过星链 从太空向社交平台 X 上发帖

2 月 26 日,伊隆马斯克旗下太空探索技术公司 SpaceX 宣布,该公司已成功地通过「星链」卫星网络,从太空向社交平台 X 上发布了第一个帖子。 这一次的发布,是通过手机卫星服务——「卫星直连蜂窝网络」(Direct to Cell&…

vscode不能远程连接ubuntu18.04.6

目录 问题解决Portable Mode 安装vscode 补充说明学习资料 问题 vscode远程ssh连接ubuntu18.04.6时,出现如下提示框,单击Learn More后,定位到问题。Can I run VS Code Server on older Linux distributions? 原始是:需要glibc …

递归和迭代【Py/Java/C++三种语言详解】LeetCode每日一题240218【树DFS】LeetCode 589、 N 叉树的前序遍历

有LeetCode算法/华为OD考试扣扣交流群可加 948025485 可上全网独家的 欧弟OJ系统 练习华子OD、大厂真题 绿色聊天软件戳 od1336了解算法冲刺训练 文章目录 题目描述解题思路代码方法一:递归法PythonJavaC时空复杂度 方法二:迭代法PythonJavaC时空复杂度 …

北邮毕业论文Latex模板使用教程(Windows)

1latex模板下载 下载地址: https://github.com/rioxwang/BUPTGraduateThesis2安装编译环境 TEX Live 2014 或者CTEX 2.9.2.164,以及更高的版本. 下载其中一个即可 (1)TEX Live下载地址: https://tug.org/texlive/acq…