实践航拍小目标检测,基于轻量级YOLOv8n开发构建无人机航拍场景下的小目标检测识别分析系统

关于无人机相关的场景在我们之前的博文也有一些比较早期的实践,感兴趣的话可以自行移步阅读即可:

《deepLabV3Plus实现无人机航拍目标分割识别系统》

《基于目标检测的无人机航拍场景下小目标检测实践》

《助力环保河道水质监测,基于yolov5全系列模型【n/s/m/l/x】开发构建不同参数量级的无人机航拍河道污染漂浮物船只目标检测识别系统,集成GradCAM对模型检测识别能力进行分析》

《基于YOLO开发构建红外场景下无人机航拍车辆实例分割检测识别分析系统》

《基于轻量级YOLO模型开发构建大疆无人机检测系统》

《基于轻量级YOLOv5n/s/m三款模型开发构建基于无人机视角的高空红外目标检测识别分析系统,对比测试分析性能》

《基于目标检测实现遥感场景下的车辆检测计数》

《共建共创共享》

《助力森林火情烟雾检测预警,基于YOLOv5全系列模型[n/s/m/l/x]开发构建无人机航拍场景下的森林火情检测识别系统》

《UAV 无人机检测实践分析》

《助力森林火情预警检测,基于YOLOv7-tiny、YOLOv7和YOLOv7x开发构建无人机航拍场景下的森林火情检测是别预警系统》

 《无人机助力电力设备螺母缺销智能检测识别,python基于YOLOv5开发构建电力设备螺母缺销小目标检测识别系统》

《无人机助力电力设备螺母缺销智能检测识别,python基于YOLOv7开发构建电力设备螺母缺销小目标检测识别系统》

随着科技社会的发展,无人机在越来越多领域中扮演者越来越重要的作用,基于无人机航拍的质检是一个很有潜力的发展方向,一方面代替传统纯人工的方式可以降低人工成本,另一方面可以在危险场合下降低人员受伤的风险,可谓是一举两得。

本文的主要想法是想要基于最新的YOLOv8系列中最为轻量级的n系列的模型来开发构建无人机航拍场景下的小目标检测识别系统,首先看下实例效果:

简单看下实例数据集:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

YOLOv8官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型权重地址如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里给出yolov8n的模型文件如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 10   # number of classes
scales: [0.33, 0.25, 1024] # YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

这里因为时间有限,暂时没有能够开发完成五款不同参数量级的模型来进行综合全面的对比分析,后面找时间再进行,这里选择的是YOLOv8下最为轻量级的n系列的模型,等待训练完成后我们来详细看下结果。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【训练可视化】

【Batch实例】

【离线推理实例】

感兴趣的话也都可以试试看!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv8n

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2811990.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

QT之项目经验(windows下的sqlite,c++开发)

目录 一、需要时间去磨练gui的调整和优化 1. 借鉴网上开源项目学习 2. gui的布局及调整是磨人的一件事情 3. gui的布局也是可以用组件复刻的 4. 耗时的设备树 二、多线程异步弹窗 三、定时任务动态变更设定 1.确定按钮触发 2.此处监听定时任务时间的改变 3.此处对改变做出具…

[算法沉淀记录]排序算法 —— 快速排序

排序算法 —— 快速排序介绍 基本概念 快速排序(Quicksort)是一种排序算法,最早由东尼霍尔提出。在平均状况下,排序 n 个项目要 Ο(n log n) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上&…

linux centos7.9改dns和ip

vi /etc/sysconfig/network-scripts/ifcfg-ens32 :wq后 重启网络服务 systemctl restart network —————————————————————————— 篇外话题 软件下载 xshell可以从腾讯软件中心下载

Open CASCADE学习|GC_MakeArcOfCircle构造圆弧

目录 1、通过圆及圆的两个参数创建圆弧,参数为弧度角 2、通过圆及圆上的一点、圆的1个参数创建圆弧,参数为弧度角,Sense决定方向 3、通过圆及圆上的两个点创建圆弧,Sense决定方向 4、通过三点创建圆弧,最后一点应安…

react useRef用法

1&#xff0c;保存变量永远不丢失 import React, { useState,useRef } from react export default function App() { const [count,setcount] useState(0) var mycount useRef(0)//保存变量永远不丢失--useRef用的是闭包原理 return( <div> <button onClick{()>…

SpringBoot使用classfinal-maven-plugin插件加密Jar包

jar包加密 1、在启动类的pom.xml中加入classfinal-maven-plugin插件 <build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></plugin><plugin><…

Qt QWidget 简约美观的加载动画 第五季 - 小方块风格

给大家分享两个小方块风格的加载动画 &#x1f60a; 第五季来啦 &#x1f60a; 效果如下: 一个三个文件,可以直接编译运行 //main.cpp #include "LoadingAnimWidget.h" #include <QApplication> #include <QGridLayout> int main(int argc, char *arg…

Python之词频统计(自然语言处理)

背景 词频统计是指对一段文本中每个单词出现的次数进行计数分析。这种分析有助于了解文本的重点词汇、主题或作者的写作风格。如果你有一个特定的文本或想要分析某些内容的词频&#xff0c;你可以提供文本&#xff0c;我可以为你进行简单的词频统计。 例如&#xff0c;如果你…

jeesite用字典项配置二级下拉选

1、配置字典项 2、html代码&#xff1a;修改下拉选项框 <div class"col-xs-6"><div class"form-group"><label class"control-label col-sm-4" title""><span class"required">*</span> ${…

备考北京高考数学:历年选择题真题练一练和解析(2014-2023)

还有三个多月的时间就要高考了&#xff0c;我们今天继续看北京市高考数学真题和解析。今天看5道选择题。独家制作的在线练习集&#xff0c;可以便捷地反复刷这些真题&#xff0c;吃透真题&#xff08;背后的知识点和解题技巧&#xff09;&#xff0c;让高考数学再上一个台阶。 …

OpenAI Sora 关键技术详解:揭秘时空碎片 (Spacetime Patches) 技术

编者按&#xff1a;近日&#xff0c;OpenAI发布其首个视频生成模型“Sora”&#xff0c;该模型生成的视频内容可以呈现出多个角色、特定动作以及复杂场景&#xff0c;为构建能够理解和模拟现实世界的人工智能模型奠定了基础。 本文解析的重点即是 Sora 背后的核心技术 Spacetim…

单片机51 定时器

一、基本概念 1.1简介 单片机的定时器是一种内部功能模块&#xff0c;用于产生计时、计数、延时等功能。定时器通常由一个或多个计数器和相关的控制逻辑组成。单片机的定时器可以运行在不同的工作模式下&#xff0c;以适应不同的计时和计数需求。 C51中的定时器和计数器是同…

Tomcat 下部署若依单体应用可观测最佳实践

实现目标 采集指标信息采集链路信息采集日志信息采集 RUM 信息会话重放 即用户访问前端的一系列过程的会话录制信息&#xff0c;包括点击某个按钮、操作界面、停留时间等&#xff0c;有助于客户真是意图、操作复现 版本信息 Tomcat (9.0.81)Springboot(2.6.2)JDK (>8)DDT…

请求包的大小会影响Redis每秒处理请求数量

文章目录 &#x1f50a;博主介绍&#x1f964;本文内容压测规划客户端长连接数量对性能的影响请求包大小的影响Pipleline模式对Redis的影响 &#x1f4e2;文章总结&#x1f4e5;博主目标 &#x1f50a;博主介绍 &#x1f31f;我是廖志伟&#xff0c;一名Java开发工程师、Java领…

第二章 Xshell5连接VM中虚拟系统Ubuntu1704

第二章 Xshell5连接VM中虚拟系统Ubuntu1704 第一章 Win10系统VM安装Ubuntu1704虚拟机 第三章 VMware虚拟机ubuntu显示屏幕太小&#xff0c;无法自适应解决办法 一、设置全新安装的Ubuntu的root密码 1.1、启动Ubuntu系统&#xff0c;在桌面右键打开终端 1.2、尝试登陆root用户…

【postgresql】数据表id自增与python sqlachemy结合实例

需求&#xff1a; postgresql实现一个建表语句&#xff0c;表名&#xff1a;student,字段id,name,age&#xff0c; 要求&#xff1a;每次添加一个数据id会自动增加1 在PostgreSQL中&#xff0c;您可以使用SERIAL或BIGSERIAL数据类型来自动生成主键ID。以下是一个创建名为stude…

TiDB之分布式数据库TiDB 操作管理规范【附可下载文档】

一、 目的 为了在软件生命周期内规范数据库相关的设计、开发、运维工作,便于不同团队之间的沟通及协调,制定此文档,以期在相关规范上达成共识和默契,提升相关环节的工作效率及系统的可维护性。同时好的规范,在执行的时候可以培养出好的习惯,好的习惯是软件质量的很好保证…

EMQX Enterprise 5.5 发布:新增 Elasticsearch 数据集成

EMQX Enterprise 5.5.0 版本已正式发布&#xff01; 在这个版本中&#xff0c;我们引入了一系列新的功能和改进&#xff0c;包括对 Elasticsearch 的集成、Apache IoTDB 和 OpenTSDB 数据集成优化、授权缓存支持排除主题等功能。此外&#xff0c;新版本还进行了多项改进以及 B…

Qt项目:网络1

文章目录 项目&#xff1a;网路项目1&#xff1a;主机信息查询1.1 QHostInfo类和QNetworkInterface类1.2 主机信息查询项目实现 项目2&#xff1a;基于HTTP的网络应用程序2.1 项目中用到的函数详解2.2 主要源码 项目&#xff1a;网路 项目1&#xff1a;主机信息查询 使用QHostI…

【练习——打印每一位数】

打印一个数的每一位 举个例子&#xff1a;我们现在要求打印出123的每一位数字。我们需要去想123%10等于3&#xff0c;就可以把3单独打印出来了&#xff0c;然后再将123/10可以得到12&#xff0c;将12%10就可以打印出2&#xff0c;而我们最后想打印出1&#xff0c;只需要1%10就…