【变压器故障诊断分类及预测】基于GRNN神经网络

课题名称:基于GRNN神经网络的变压器故障诊断分类及预测

版本日期:2024-02-10

运行方式:直接运行GRNN0507.m文件

代码获取方式:私信博主或QQ:491052175

模型描述:

对变压器油中溶解气体进行分析是变压器内部故障诊断的重要手段。我国当前大量应用的是改良三比值法,但利用三比值法作为变压器故障诊断的依据存在两方面的不足,即所谓编码缺损和临界值判据缺损。当前变压器故障诊断系统大多数都是采用BP网络模型,但由于BP网络自身结构的点,在训练样本较大且要求精度较高时,网络常常不收敛且容易陷入局部最优。油中溶解气体分析的方法能很好地反映变压器的潜伏性故障,且在各种诊断方法中以改良三比值法的判断准确率最高,所以选择油中溶解气体含量的三对比值作为神经网络的输入特征向量而输出特征向量则选用变压器的故障类型。概率神经网络结构简单,训练简洁,利用概率神经网络模型的强大的非线性分类能力,将故障样本空间映射到故障模式空间中,可形成一个具有较强容错能力和结构自适应能力的诊断网络系统,从而提高故障诊断的准确率。

算法流程:

1. 收集数据:数据中的data.mat是33*4维的矩阵,前三列为改良三比值法数据,第4列为分类输出,也就是故障的类别。使用前23个样本作为PNN训练样本,后10个样本作为测试样本

2. 创建GRNN神经网络:利用Matlab自带的神经网络工具箱中的函数newgrnn()可以构建一个GRNN神经网络。

3. 根据已有故障数据进行训练:将训练数据输入网络,便可以对网络进行训练

4. 网络效果测试:将测试数据代入到GRNN神经网络进行预测得到预测数据

5. 结果分析:通过对比测试数据中变压器实际故障类型和PNN预测的故障类型来验证PNN神经网络的预测精度

GRNN神经网络函数调用形式:

其调用格式为net=newgrnn(P,T,SPREAD),其中:

P为Q组输入向量组成的R*Q维矩阵,即输入数据矩阵

T为Q组目标分类向量组成的S*Q维矩阵,即输出数据矩阵

SPREAD为径向基函数的扩展速度,默认值为1

改进方向:

标准程序无改进

待改进方向:

可以研究一下Spread值对于GRNN神经网络的影响,选择最佳Spread值应用到GRNN神经网络上

特殊说明:

1. 经过多次测试SPREAD值为默认值时,预测效果相对较好

2. 神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值

Matlab仿真结果:

基于GRNN神经网络的变压器故障诊断的预测精度:

基于GRNN神经网络的变压器故障诊断的训练数据预测和误差:

基于GRNN神经网络的变压器故障诊断的测试数据预测和误差:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2809501.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

JavaScript 进阶02

深入对象 构造函数 构造函数是用于创建对象的函数。 <script> //构造函数 构造函数的首字母大写 function Obj(name,age,aaa){this.namenamethis.ageage } //调用函数 const obj1new Obj("小明",4) console.log(obj1) </script> 使用 new 关键字调用…

[AutoSar]BSW_Com03 DBC详解 (一)

目录 关键词平台说明一、DBC 定义1.1 相关工具 二、主要组成部分介绍2.1 Networks2.2 ECUs2.3 Network nodes2.4 messages2.5 signal2.6 Value Tables 三、主要组成部分关系图 关键词 嵌入式、C语言、autosar、OS、BSW 平台说明 项目ValueOSautosar OSautosar厂商vector &am…

docker-compose 搭建laravel环境

laravel环境包含nginx,mysql,php7.4,redis 一、安装好docker后pull镜像 1.nginx镜像 docker pull nginx:latest单独启动容器 docker run --name nginx -p 80:80 -d nginx 2.php镜像 docker pull php:7.4-fpm3.mysql镜像 docker pull mysql:5.74.redis镜像 docker pull r…

ChatGPT调教指南 | 咒语指南 | Prompts提示词教程(三)

在人工智能成为我们日常互动中无处不在的一部分的时代&#xff0c;与大型语言模型(llm)有效沟通的能力是无价的。“良好提示的26条原则”为优化与这些复杂系统的交互提供了全面的指导。本指南证明了人类和人工智能之间的微妙关系&#xff0c;强调清晰、专一和结构化的沟通方法。…

【数据结构初阶 8】二叉树练习题

文章目录 &#x1f308; 01. 求二叉树结点个数&#x1f308; 02. 求二叉树叶结点个数&#x1f308; 03. 求二叉树的高度&#x1f308; 04. 求第 k 层结点个数&#x1f308; 05. 查找值为 x 的结点&#x1f308; 06. 判断是否是单值二叉树&#x1f308; 07. 判断两棵树是否相同&…

单片机05__串口USART通信__按键控制向上位机传输字符串

串口USART通信 通用UART介绍 1.通信的概念 计算机与外界进行信息交换的过程称之为通信。 在通信的过程中&#xff0c;通信双方都需要遵守的规则称之为通信协议。 硬件协议&#xff1a;将数据以什么样的方式传输过去 软件协议&#xff1a;将数据以什么样的顺序传输过去 2.常用…

今日早报 每日精选15条新闻简报 每天一分钟 知晓天下事 2月26日,星期一

每天一分钟&#xff0c;知晓天下事&#xff01; 2024年2月26日 星期一 农历正月十七 1、 气象台&#xff1a;3月初之前南方大部将维持阴雨雪天气。 2、 据海关统计&#xff0c;京津冀协同发展十年成效显著&#xff0c;外贸总量跨两个万亿台阶。 3、 2024年研考初试成绩今天起…

逆向茶话会笔记

安卓逆向 用用burp设置代理或者用charles抓包 windows httpopen 类比web站点渗透测试 推荐书 飞虫 安卓大佬不怎么打ctf 喜欢在看雪和吾爱破解 提问环节 q websocket grpc抓包有什么推荐的工具&#xff1f; a 不太了解 游戏安全和llvm 既要逆游戏也要逆外挂 逆游戏入…

自己测试CSDN质量分3

你好你好你好你好你好你好你好你好你好你好你好你好你好你好你好你好你好 质量分测试网址

【Leetcode】938. 二叉搜索树的范围和

文章目录 题目思路代码结论 题目 题目链接 给定二叉搜索树的根结点 root&#xff0c;返回值位于范围 [low, high] 之间的所有结点的值的和。 示例 1&#xff1a; 输入&#xff1a;root [10,5,15,3,7,null,18], low 7, high 15 输出&#xff1a;32 示例 2&#xff1a; 输入…

【VSCode】解决VSCode远程连接问题:远程主机可能不符合 glibc 和 libstdc++

今天用VSCode进行ssh连接时&#xff0c;提示“远程主机可能不符合 glibc 和 libstdc VSCode 服务器的先决条件”。查了一下发现这个问题主要是由于VSCode在一月份发布的最新版本v1.86中要求远程主机 glibc>2.28导致的&#xff0c;所以ssh连接Ubuntu 18.04的时候就会提示这个…

apachectl: line 79: 20233 Segmentation fault (core dumped) $HTTPD “$@“

[TOC](apachectl: line 79: 20233 Segmentation fault (core dumped) $HTTPD “$”) 1、问题描述 apache 启动报错 apachectl: line 79: 20233 Segmentation fault (core dumped) $HTTPD “$” 2、问题分析 参考链接: https://stackoverflow.com/questions/43726930/apache…

【JVM】线上一次fullGC排查思路

fullGC问题背景 监控告警发现&#xff0c;今天开始我们线上应用频繁出现fullGC&#xff0c;并且每次出现后磁盘都会被占满 查看监控 查看监控发现FULLGC的机器均为同一个机房的集器&#xff0c;并且该机房有线上error报错&#xff0c;数据库监控对应的时间点也有异常&#x…

sonar-java 手写一个规则-单元测试分析

前言 最近做项目&#xff0c;定制sonar规则&#xff0c;提高Java代码质量&#xff0c;在编写的sonar规则&#xff0c;做验证时&#xff0c;使用单元测试有一些简单的心得感悟&#xff0c;分享出来。 自定义规则模式 sonar的自定义规则很简单&#xff0c;一般而言有2种模式可…

JAVA工程师面试专题-《Mysql》篇

目录 一、基础 1、mysql可以使用多少列创建索引&#xff1f; 2、mysql常用的存储引擎有哪些 3、MySQL 存储引擎&#xff0c;两者区别 4、mysql默认的隔离级别 5、数据库三范式 6、drop、delete 与 truncate 区别&#xff1f; 7、IN与EXISTS的区别 二、索引 1、索引及索…

数据库应用:Windows 部署 MySQL 8.0.36

目录 一、实验 1.环境 2.Windows 部署 MySQL 8.0.36 3.Windows配置环境变量 4.Navicat链接MySQL 二、问题 1.安装MySQL 报错 一、实验 1.环境 &#xff08;1&#xff09;主机 表1 主机 主机软件版本IP备注WindowsMySQL8.0.36localhost 2.Windows 部署 MySQL 8.0.…

云原生之容器编排实践-ruoyi-cloud项目部署到K8S:MySQL8

背景 前面搭建好了 Kubernetes 集群与私有镜像仓库&#xff0c;终于要进入服务编排的实践环节了。本系列拿 ruoyi-cloud 项目进行练手&#xff0c;按照 MySQL &#xff0c; Nacos &#xff0c; Redis &#xff0c; Nginx &#xff0c; Gateway &#xff0c; Auth &#xff0c;…

顺序表知识点——顺序表的增删查改

目录 准备文件 创建顺序表蓝图 顺序表初始化函数接口 顺序表的销毁函数接口 顺序表的打印函数接口 顺序表的插入函数接口 顺序表的删除函数接口 从本节开始&#xff0c; 复习数据结构。 空间复杂度还有时间复杂度之后利用例题学习。 这节先学习顺序表的增删查改。 首…

Android Gradle开发与应用 (二) : Groovy基础语法

1. Groovy是什么 Groovy是基于JVM虚拟机的一种动态语言&#xff0c;语法和Java非常相似&#xff0c;并能够无缝地与Java代码集成和互操作&#xff0c;增加了很多动态类型和灵活的特性。(闭包、DSL) 语法和Java非常相似这个特点&#xff0c;意味着&#xff0c;如果我们完全不懂…

[ffmpeg] x264 配置参数解析

背景 创建 x264 编码器后&#xff0c;其有一组默认的编码器配置参数&#xff0c;也可以根据需要修改参数&#xff0c;来满足编码要求。 具体参数 可修改的参数&#xff0c;比较多&#xff0c;这边只列举一些常用的。 获取可以配置的参数 方式1 查看 ffmpeg源码 libx264.c…