单片机05__串口USART通信__按键控制向上位机传输字符串

串口USART通信

通用UART介绍

1.通信的概念

        计算机与外界进行信息交换的过程称之为通信。

        在通信的过程中,通信双方都需要遵守的规则称之为通信协议。

        硬件协议:将数据以什么样的方式传输过去

        软件协议:将数据以什么样的顺序传输过去

2.常用的通信方式  

并行通信---LCD屏

        所传输的数据的各个二进制位数据都是同时发送或接收

        优点:通信速度快。

        缺点:由于有多少位的二进制数据,就需要多少根数据线,所以说通信成本比较高。

        一般适合在近距离场所使用。

串行通信----串口

        所传输的数据的各个二进制位数据按照顺序一位一位的发送或者接收

        优点:串行通信一般只需要1-2根数据线,所以说通信成本比较低。

        缺点:通信速度比较慢。

        一般适合在远距离场所使用。

3.串行通信种类 

①异步通信   

        异步通信概念:

        异步通信:指收发双方使用的时钟源(提供时钟脉冲)不同,不受到同一根时钟线的控制,在通信时不要求基本频率相等。

        异步通信数据格式:

        在异步通信的过程:数据或字符都是逐帧传输

        异步传输的数据帧为:起始位+数据位+校验位+结束位

        数据传输的方式为:先发低位(LSB),再发高位(MSB),从起始位到结束位构成了完整的一帧。 

起始位:使用1个位的低电平“0”来表示数据通信的开始。  

数据位:串行通信所需要传输的数据,数据位长度为5-8位(常用的是8位--1byte)

奇偶校验位:校验位在串行通信中是可选项,用于检验传输的数据是否正确,检验方法为:“奇校验”和“偶校验”。

停止位数据缓存区使用高电平“1”来表示数据通信的结束,停止位长度为:0.5位、1位、1.5位、2位、2.5位停止位数越大,传输的速度越慢。

        奇校验:“数据位”加上“校验位”后,使得传输的数据中“1”的个数为奇数个。

        偶校验:“数据位”加上“校验位”后,使得传输的数据中“1”的个数为偶数个。

例如:

数据位

校验位

1010 0011

奇校验:1

偶校验:0

0100 0000

奇校验:0

偶校验:1

②同步通信

        同步通信概念:

                通信双方受到同一根时钟源(时钟线的控制,其时钟频率相等。

        同步通信数据帧格式:

        同步通信发送的数据开始是以“同步字符”来表示的(一般约定为1-2个字节),当接收方接收到同步字符后就表示接受下来收到的数据为需要发送的数据流数据的位数不确定

4.串行通信的数据传输速度  

        串行通信数据的传输速度称为波特率(也叫比特率),是指一秒钟内所传输的数据(二进制)位数,英文简称BPS

例:假设数据传输的速率为120个字符每秒,每个字符有1个起始位,8个数据位以及1个停止位构成,其串行波特率是多少???   

        每个字符的位数:1+8+1= 10  

        每秒传输的位数:120*10/s = 1200 BPS

5.串行通信工作方式

        ①单工制式:只有一根数据线,数据在甲机和乙机之间只允许单方向传输

        ②半双工:只有一根数据线,数据在甲机和乙机之间允许双方向的传输,但是在同一时刻只允许数据的发送或者接收

        ③全双工:有两根数据线,数据在甲机和乙机之间允许双方向的传输,并且可以同时在同一时刻进行数据的发送或者接收。

6.串口数据发送的格式      

串口发送数字、字母、英文符号按照ASCII表的数值发送。

串口发送中文汉字,中文符号是按照“GB2312”简体中文编码表的数值发送。

USART模块介绍STM3240x

1.USART模块概述

        STM32F40X芯片的USART模块是通用同步/异步收发器能够灵活地与外部设备进行全双工数据交换,此芯片一共有6个独立的USART模块(编号为USART1-6)。

        可以实现同步/异步通信的是USART1、2、3、6,只能实现异步通信的是UART45

        同步串口可以是异步串口,但是异步串口不能是同步串口。

        全双工:有两根数据线:TX RX   串口最远传输距离:15米左右

        串口连接:交叉相连

        USART:  TX  RX  SCLK--时钟线-------同步串口

        UART:   TX  RX               ------异步串口

        只有串口连接方式是交叉相连  :TX---RX   RX----TX

2.USART模块框图

①串口发送数据的过程

        1)在MCU内定义需要发送的数据(内核发送数据)

        2)MCU将需要发送的数据通过数据总线写入到“发送数据寄存器(数据寄存器)”

/****************以下部分由硬件自动完成(无需配置)************************/

        3)当“发送数据寄存器”被写入后,将数据并行发送到“发送移位寄存器”,并且由硬件自动产生一个“发送数据寄存器”为空的标志。

        4)“发送移位寄存器”根据已经设置好的波特率时钟脉冲,把数据按照顺序一位一位的发送到数据发送管脚(TX)。

        当“发送移位寄存器”为空并且“发送数据寄存器”也为空的时候,由硬件自动产生一个“传输完成”的标志。

        5)数据在串口发送管脚发送数据,数据通过USB转串口芯片(电平转换芯片)后,由USB数据线传输到电脑上位机上。

②串口接收数据的过程

        1)电脑上位机通过USB线发送数据,数据通过USB转串口芯片发送到串口接收数据管脚(RX)

        2)接收管脚根据已经设置好的波特率时钟脉冲,一位一位的把数据传输到“接收移位寄存器”中。被动接收:没有“满”标志,满时自动传输

        3)当“接收移位寄存器”接收完数据之后,并行把数据传输到“接收数据寄存器”中,并且会由硬件自动产生一个“接收数据寄存器”为满的标志。

/***************以上部分由硬件自动完成(无需配置)************************/

        4)CPU通过数据总线读出“接收数据寄存器”的内容。

3. USART模块特征

  1. 可以支持波特率的时钟配为16倍过采样或或者8倍过采样来对不同时钟速度之间的误差容忍。
  2. 支持小数位波特率发生器。
  3. 可以根据实际情况配置数据位长度为8位(如果不使用奇偶校验位,则数据位为8位,如果使用奇偶校验位,则数据位为7位),或者数据位长度为9位(包含了校验位)。
  4. 停止位支持可以配置为1位或2位。
  5. 支持DMA数据高速传输。
  6. 发送器和接收器具有单独使能位USTAR单独开启时钟。
  7. USART模块有3个状态标志:接收缓冲区已满、发送缓冲区为空、传输完成。
  8. USART模块不仅可以发送奇偶校验位,也可以对接收到的数据进行奇偶校验。
  9. USART模块具有4个错误检测标志:

    溢出错误(原来的数据没有被读出,又来了新的数据,则产生溢出错误。溢出错误状态时,“接收数据寄存器”保留原来旧的数值,丢弃新的数值)、

     噪声错误(干扰错误)、

     帧错误(数据帧格式错误)、

     奇偶校验错误

10.USART模块的中断源:

     CTS变化(硬件流发送变化)、

     LIN停止符号检测(LIN数据传输完成)、

     发送数据寄存器为空、

     发送完成、

     接收数据寄存器为满,接收到线路空闲(USART线路在忙碌状态转换为空闲的时刻)、

     溢出错误、

     帧错误、

     噪声错误、

     奇偶校验错误。

     只要发生上面的状态中的其中一条(前提是开启了中断),都会产生一个USART中断。

11.多处理器通信,如果地址不匹配,则进入静默模式。

12.从静默模式唤醒(通过线路空闲检测或地址标记检测)。

USART模块配置STM3240x

1.STM3240x外设功能管脚复用GPIO配置

STM32F40x外设功能管脚复用概念

        STM32F40X芯片所有的片内外设(芯片以内内核以外)模块的功能管脚都是使用GPIO端口的复用功能,并且每个IO端口都会对应多个复用功能管脚。

STM32F40x外设功能管脚复用

STM32F40x外设管脚复用相应寄存器

GPIO复用功能低位寄存器 (GPIOx_AFR[0]) (x = A..I)

        寄存器作用:设置STM32F40X芯片GPIOx组端口0-7对应的外设模块复用功能,每4位控制一个IO口。把对应的“复用功能编码”写入相对应的位,则设置对应端口为复用功能。

GPIO 复用功能高位寄存器 (GPIOx_AFR[1]) (x = A..I)

        寄存器作用:设置STM32F40X芯片GPIOx组端口8-15对应的外设模块复用功能,每4位控制一个IO口。把对应的“复用功能编码”写入相对应的位,则设置对应端口为复用功能。

STM32F40x外设管脚复用步骤

例如:

        1)需要使用的复用端口是否满足复用的前提条件。

        2)配置端口模式寄存器,配置为复用功能。

        3)根据具体的端口管脚选择对应的复用功能寄存器 0-7使用低位寄存器 8-15使用高位寄存器。

        4)选择对应的“复用功能编码”配置复用功能寄存器。

RCC->AHB1ENR |= 1<<0; //开启A口时钟

//PA9

GPIOA->MODER &= ~(3<<9*2);

GPIOA->MODER |= 2<<9*2; //配置复用功能

GPIOA->AFR[1] |= 7<<(9-8)*4; //配置为串口功能

//PA10

GPIOA->MODER &= ~(3<<10*2);

GPIOA->MODER |= 2<<10*2; //配置复用功能

GPIOA->AFR[1] |= 7<<(10-8)*4; //配置为串口功能

2.STM3240x芯片USART模块相关寄存器

状态寄存器 (USART_SR)

        寄存器作用:检测串口模块的具体功能的当前状态(数据是否接收/发送完成,寄存器是否为空),如果发生了对应的状态,硬件会自动置1,并且可以用来申请中断。

数据寄存器 (USART_DR)

        寄存器作用:存放串口需要发送和接收的数据,数据寄存器包含了“接收数据寄存器”和“发送数据寄存器”,两个寄存器共用同一个寄存器地址以及空间

注:当CPU往数据寄存器写数据的时候,数据寄存器就是“发送数据寄存器”,当CPU对数据寄存器进行读操作的时候,数据寄存器就是“接收数据寄存器”。

波特率寄存器 (USART_BRR)   

        波特率:USART模块的指定波特率时钟大小(115200/9600等)-----已知

        fck:USART模块挂载的时钟总线频率(HZ)--------已知   1MHZ = 10^6HZ

        OVER8USART模块采样滤波的选择,采用16倍过采样,则为数字“0”,采用8倍过采样,则为数字“1”

        USARTDIV:存放USART模块波特率寄存器的计算值。

注:USARTDIV计算值不能直接放入波特率寄存器中,而是分别计算出整数部分和小数部分,分别写入到寄存器里面。

假设设置的波特率为115200,16倍过采样,使用的事USART1,挂载在APB2上时钟频率为72MHZ

Float USARTDIV ;

int ZHENG,XIAO;

USARTDIV = 72000000.0/(8*(2-0)*115200);  //39.0625

ZHENG = (int)USARTDIV;//39  0010 0111

XIAO = (USARTDIV - ZHENG)*16;   //0001

USAT1->BRR = ZHENG<<4 | XIAO;  // 0010 0111  0001

控制寄存器 1 (USART_CR1)

        寄存器作用:设置串口模块对应的工作模式以及相关参数

控制寄存器 2 (USART_CR2)

        寄存器作用:设置串口模块对应的工作模式以及相关参数

控制寄存器 3 (USART_CR3)

        寄存器作用:设置串口模块对应的工作模式以及相关参数

USART模块编程思路

①找到USART模块对应的GPIO端口 -----CH340----PA9  PA10

        1)先开对应的IO口时钟

        2)设置端口功能:复用功能

        3)通过复用功能寄存器选择具体的复用功能

                     GPIO时钟

                           ​​​​​​​        串口USART时钟

GPIO寄存器配置

②USART模块初始化

        1)使能USART对应的时钟

        2)设置相关的工作参数---控制寄存器: 发送接收开启、数据位数、是否需要校验、停止位等。

        3)如果需要中断,则开启对应中断位

USART1配置

③设置USART模块波特率

        1)先设置采样参数:16倍过采样还是8倍过采样

        2)根据波特率计算公式计算出波特率的计算数值

        3)将波特率计算值分成小数和整数部分写入到波特率寄存器中

④使能串口

⑤USART模块发送数据

         1)先检测“发送数据寄存器是否为空”或“传输完成”

         2)把需要发送的数据写入到数据寄存器

⑥USART模块接收数据

         1)轮询判断“接收数据寄存器为满”

         2)读取数据寄存器中的内容

“usart.c”

/*************************
函数功能:串口USART1初始化
硬件接口:
PA9 --- USART1_TX --- 复用功能
PA10--- USART1_RX --- 复用功能
GPIOA --- AHB1 168MHZ
USART1 --- APB2 84MHZ
**************************/void USART1_Init(uint32_t brr)
{float USARTDIV;	//波特率寄存器存放值uint32_t fck = 84000000.0;	//USART1挂载在APB2的频率84MHZuint16_t integer,decimal;	//波特率寄存器存放值的整数/小数RCC->AHB1ENR |= 1<<0;	//开启A口时钟/*①*///PA9GPIOA->MODER &= ~(3<<9*2);	GPIOA->MODER |= 2<<9*2;	//配置复用功能GPIOA->AFR[1] |= 7<<(9-8)*4;	//配置为串口功能//PA10GPIOA->MODER &= ~(3<<10*2);GPIOA->MODER |= 2<<10*2;	//配置复用功能GPIOA->AFR[1] |= 7<<(10-8)*4;	//配置为串口功能
/*②*/	//USARTRCC->APB2ENR |= 1<<4; //开启USART1时钟USART1->CR1 &= ~(1<<15);	//串口配置16倍过采样USART1->CR1 &= ~(1<<12);	//配置8位数据USART1->CR2 &= ~(3<<12);	//1位停止位
/*③*///波特率USARTDIV = fck/(8*(2 - 0)*brr);integer = USARTDIV;	//整数部分decimal = (USARTDIV - integer)*16;	//小数部分USART1->BRR = integer<<4 | decimal;	//数据放入波特率寄存器 /*④*/USART1->CR1 |= 1<<3;	//使能发送器USART1->CR1 |= 1<<2;	//使能接收器USART1->CR1 |= 1<<13;	//使能串口}

“main.c”

USART1_Init(115200);while(1){while(!(USART1->SR & 1<<6)){//轮询检测接收数据寄存器标志位是否已满}USART1->DR = cha;	//读出接收数据寄存器内容while(!(USART1->SR & 1<<5))	{//轮询检测发送数据寄存器标志位}cha = USART1->DR;	//发送}

改写printf函数

目标:使用printf函数,通过串口USART1向上位机发送信息。

例如:printf("hello world\r\n");

int a=10;

  printf("a = %d\r\n",a);

/********************************
函数功能:修改printf底层代码
注意:不可更改!
魔术棒Target---Use MicroLIB
*********************************/
int fputc(int data,FILE* file)
{while(!(USART1->SR & 1<<6)){}USART1->DR = data;	//清标志位&&发送数据return data;	
}

按键控制向上位机传输字符串示例

“usart.c”

#include "usart.h"
#include "stdio.h"
/*************************
函数功能:串口USART1初始化
硬件接口:
PA9 --- USART1_TX --- 复用功能
PA10--- USART1_RX --- 复用功能
GPIOA --- AHB1 168MHZ
USART1 --- APB2 84MHZ
**************************/void USART1_Init(uint32_t brr)
{float USARTDIV;	//波特率寄存器存放值uint32_t fck = 84000000.0;	//USART1挂载在APB2的频率84MHZuint16_t integer,decimal;	//波特率寄存器存放值的整数/小数RCC->AHB1ENR |= 1<<0;	//开启A口时钟//PA9GPIOA->MODER &= ~(3<<9*2);	GPIOA->MODER |= 2<<9*2;	//配置复用功能GPIOA->AFR[1] |= 7<<(9-8)*4;	//配置为串口功能//PA10GPIOA->MODER &= ~(3<<10*2);GPIOA->MODER |= 2<<10*2;	//配置复用功能GPIOA->AFR[1] |= 7<<(10-8)*4;	//配置为串口功能//USARTRCC->APB2ENR |= 1<<4; //开启USART1时钟USART1->CR1 &= ~(1<<15);	//串口配置16倍过采样USART1->CR1 &= ~(1<<12);	//配置8位数据USART1->CR2 &= ~(3<<12);	//1位停止位//波特率USARTDIV = fck/(8*(2 - 0)*brr);integer = USARTDIV;	//整数部分decimal = (USARTDIV - integer)*16;	//小数部分USART1->BRR = integer<<4 | decimal;	//数据放入波特率寄存器 USART1->CR1 |= 1<<3;	//使能发送器USART1->CR1 |= 1<<2;	//使能接收器USART1->CR1 |= 1<<13;	//使能串口}/********************************
函数功能:修改printf底层代码
注意:不可更改!
魔术棒Target---Use MicroLIB
*********************************/
int fputc(int data,FILE* file)
{while(!(USART1->SR & 1<<6)){}USART1->DR = data;	//清标志位&&发送数据return data;	
}/************************************
函数功能:串口USART1传输字符串
函数参数:str:字符串
*************************************/
void Prin_Str(uint8_t *str)
{uint8_t ch;uint32_t i = 0;while(str[i] != '\0'){ch = str[i];while(!(USART1->SR & 1<<6)){}USART1->DR = ch;i++;}
}

“KEY.c”

#include "KEY.h"
#include "delay.h"
/*****************************************
函数功能:按键初始化
函数接口:KEY1--PA0--浮空/下拉输入
******************************************/
void KEY_Init(void)
{RCC->AHB1ENR |= 1<<0;	//按键PA0时钟使能GPIOA->MODER &= ~(3<<0*2);	//清零&&输入模式GPIOA->PUPDR &= ~(3<<0*2);	//清零&&浮空GPIOA->PUPDR |= 2<<0*2;	//下拉
}
/*****************************************
函数功能:按键消抖
函数接口:KEY1--PA0--浮空/下拉输出
返回参数:返回0:没有按下,返回1:按键按下
******************************************/
uint8_t KEY_Scan(void){	static uint8_t flag =0;	//0:按键未按下,1:按键已按下if((flag ==0) && (GPIOA->IDR & 1<<0))	//判断按键是否按下,IDR第0位为1时按下{flag = 1;delay(500);if(GPIOA->IDR & 1<<0){return 1;}}else if((flag==1)&& !(GPIOA->IDR & 1<<0))	//松手检测{flag = 0;	//按键松手}return 0;
}#if 0
uint8_t KEY_Scan2(void)
{static uint8_t flag = 0;if((flag == 0)&&(GPIOA->IDR & 1<<0 || GPIOA->IDR & 1<<1)){delay(1000);if(GPIOA->IDR & 1<<0){return 1;}if(GPIOA->IDR & 1<<1){return 2;}}else if((flag == 1) && (!(GPIOA->IDR & 1<<0) || !(GPIOA->IDR & 1<<1))){flag = 0;}return 0;
}uint8_t KEY_Scan3(void)
{static uint8_t flag = 0;if((flag == 0)&&(KEY1==1 || KEY2 == 1)){delay(1000);if(KEY1==1){return 1;}if(KEY2==1){return 2;}}else if((flag == 1) && (KEY1==0 || KEY2==0)){flag = 0;}return 0;
}#endif

“main.c”

#include "stm32f4xx.h"                  // Device header
#include "LED.h"
#include "KEY.h"
#include "delay.h"
#include "time.h"
#include "usart.h"
#include "stdio.h"#define STR "qwertyuiop"	//串口1传输字符串int main(void)
{uint8_t key;LED_Init();KEY_Init();USART1_Init(115200);printf("按下KEY1发送数据:\r\n");while(1){	key = KEY_Scan();if(key == 1){Prin_Str(STR);LED5 = !LED5;printf("按下KEY1发送数据:\r\n");}}	
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2809495.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

今日早报 每日精选15条新闻简报 每天一分钟 知晓天下事 2月26日,星期一

每天一分钟&#xff0c;知晓天下事&#xff01; 2024年2月26日 星期一 农历正月十七 1、 气象台&#xff1a;3月初之前南方大部将维持阴雨雪天气。 2、 据海关统计&#xff0c;京津冀协同发展十年成效显著&#xff0c;外贸总量跨两个万亿台阶。 3、 2024年研考初试成绩今天起…

逆向茶话会笔记

安卓逆向 用用burp设置代理或者用charles抓包 windows httpopen 类比web站点渗透测试 推荐书 飞虫 安卓大佬不怎么打ctf 喜欢在看雪和吾爱破解 提问环节 q websocket grpc抓包有什么推荐的工具&#xff1f; a 不太了解 游戏安全和llvm 既要逆游戏也要逆外挂 逆游戏入…

自己测试CSDN质量分3

你好你好你好你好你好你好你好你好你好你好你好你好你好你好你好你好你好 质量分测试网址

【Leetcode】938. 二叉搜索树的范围和

文章目录 题目思路代码结论 题目 题目链接 给定二叉搜索树的根结点 root&#xff0c;返回值位于范围 [low, high] 之间的所有结点的值的和。 示例 1&#xff1a; 输入&#xff1a;root [10,5,15,3,7,null,18], low 7, high 15 输出&#xff1a;32 示例 2&#xff1a; 输入…

【VSCode】解决VSCode远程连接问题:远程主机可能不符合 glibc 和 libstdc++

今天用VSCode进行ssh连接时&#xff0c;提示“远程主机可能不符合 glibc 和 libstdc VSCode 服务器的先决条件”。查了一下发现这个问题主要是由于VSCode在一月份发布的最新版本v1.86中要求远程主机 glibc>2.28导致的&#xff0c;所以ssh连接Ubuntu 18.04的时候就会提示这个…

apachectl: line 79: 20233 Segmentation fault (core dumped) $HTTPD “$@“

[TOC](apachectl: line 79: 20233 Segmentation fault (core dumped) $HTTPD “$”) 1、问题描述 apache 启动报错 apachectl: line 79: 20233 Segmentation fault (core dumped) $HTTPD “$” 2、问题分析 参考链接: https://stackoverflow.com/questions/43726930/apache…

【JVM】线上一次fullGC排查思路

fullGC问题背景 监控告警发现&#xff0c;今天开始我们线上应用频繁出现fullGC&#xff0c;并且每次出现后磁盘都会被占满 查看监控 查看监控发现FULLGC的机器均为同一个机房的集器&#xff0c;并且该机房有线上error报错&#xff0c;数据库监控对应的时间点也有异常&#x…

sonar-java 手写一个规则-单元测试分析

前言 最近做项目&#xff0c;定制sonar规则&#xff0c;提高Java代码质量&#xff0c;在编写的sonar规则&#xff0c;做验证时&#xff0c;使用单元测试有一些简单的心得感悟&#xff0c;分享出来。 自定义规则模式 sonar的自定义规则很简单&#xff0c;一般而言有2种模式可…

JAVA工程师面试专题-《Mysql》篇

目录 一、基础 1、mysql可以使用多少列创建索引&#xff1f; 2、mysql常用的存储引擎有哪些 3、MySQL 存储引擎&#xff0c;两者区别 4、mysql默认的隔离级别 5、数据库三范式 6、drop、delete 与 truncate 区别&#xff1f; 7、IN与EXISTS的区别 二、索引 1、索引及索…

数据库应用:Windows 部署 MySQL 8.0.36

目录 一、实验 1.环境 2.Windows 部署 MySQL 8.0.36 3.Windows配置环境变量 4.Navicat链接MySQL 二、问题 1.安装MySQL 报错 一、实验 1.环境 &#xff08;1&#xff09;主机 表1 主机 主机软件版本IP备注WindowsMySQL8.0.36localhost 2.Windows 部署 MySQL 8.0.…

云原生之容器编排实践-ruoyi-cloud项目部署到K8S:MySQL8

背景 前面搭建好了 Kubernetes 集群与私有镜像仓库&#xff0c;终于要进入服务编排的实践环节了。本系列拿 ruoyi-cloud 项目进行练手&#xff0c;按照 MySQL &#xff0c; Nacos &#xff0c; Redis &#xff0c; Nginx &#xff0c; Gateway &#xff0c; Auth &#xff0c;…

顺序表知识点——顺序表的增删查改

目录 准备文件 创建顺序表蓝图 顺序表初始化函数接口 顺序表的销毁函数接口 顺序表的打印函数接口 顺序表的插入函数接口 顺序表的删除函数接口 从本节开始&#xff0c; 复习数据结构。 空间复杂度还有时间复杂度之后利用例题学习。 这节先学习顺序表的增删查改。 首…

Android Gradle开发与应用 (二) : Groovy基础语法

1. Groovy是什么 Groovy是基于JVM虚拟机的一种动态语言&#xff0c;语法和Java非常相似&#xff0c;并能够无缝地与Java代码集成和互操作&#xff0c;增加了很多动态类型和灵活的特性。(闭包、DSL) 语法和Java非常相似这个特点&#xff0c;意味着&#xff0c;如果我们完全不懂…

[ffmpeg] x264 配置参数解析

背景 创建 x264 编码器后&#xff0c;其有一组默认的编码器配置参数&#xff0c;也可以根据需要修改参数&#xff0c;来满足编码要求。 具体参数 可修改的参数&#xff0c;比较多&#xff0c;这边只列举一些常用的。 获取可以配置的参数 方式1 查看 ffmpeg源码 libx264.c…

通用检测大模型 | 华科白翔团队提出以对象为中心的基础模型GLEE

本文首发: AIWalker https://arxiv.org/abs/2312.09158 https://glee-vision.github.io AIWalker后台回复【GLEE】即可下载原文与译文。 在这项工作中&#xff0c;我们提出了GLEE&#xff1a;一个对象级的基础模型&#xff0c;用于定位和识别图像和视频中的对象。 通过一个统一…

第二节:Vben Admin 登录逻辑梳理和对接后端准备

系列文章目录 上一节&#xff1a;第一节&#xff1a;Vben Admin介绍和初次运行 文章目录 系列文章目录前言项目路径的概述一、登录逻辑梳理loginApi接口查看Mock 二、后端程序对接准备关闭Mock 总结 前言 第一节&#xff0c;我们已经配置了前端环境&#xff0c;运行起来了我们…

查看笔记本电池健康状态-windows11

在 Windows 11 中获取详细的电池报告 Windows 11 中内置的 Powerfg 命令行选项来生成电池报告。 在任务栏上选择“搜索”&#xff0c;键入“cmd”&#xff0c;长按&#xff08;或右键单击&#xff09;“命令提示符”&#xff0c;然后选择“以管理员身份运行” ->“是”。 …

【Flink精讲】Flink性能调优:CPU核数与并行度

常见问题 举个例子 提交任务命令&#xff1a; bin/flink run \ -t yarn-per-job \ -d \ -p 5 \ 指定并行度 -Dyarn.application.queuetest \ 指定 yarn 队列 -Djobmanager.memory.process.size2048mb \ JM2~4G 足够 -Dtaskmanager.memory.process.size4096mb \ 单个 TM2~8G 足…

自动驾驶---行业发展及就业环境杂谈

进入21世纪以来&#xff0c;自动驾驶行业有着飞速的发展&#xff0c;自动驾驶技术&#xff08;L2---L3&#xff09;也逐渐落地量产到寻常百姓家。虽然最早期量产FSD的特斯拉有着深厚的技术积累&#xff0c;但是进入2010年以后&#xff0c;国内的公司也逐渐发展起来自己的自动驾…

【Java程序员面试专栏 算法思维】二 高频面试算法题:二分查找

一轮的算法训练完成后,对相关的题目有了一个初步理解了,接下来进行专题训练,以下这些题目就是汇总的高频题目,本篇主要聊聊二分查找,包括基础二分,寻找目标值的左右边界,搜索旋转数组以及波峰,以及x的平方根问题,所以放到一篇Blog中集中练习 题目关键字解题思路时间空…