MySQL - 事务日志

目录

1. redo日志

1.1 为什么需要REDO日志

1.2 REDO日志的好处、特点

1. 好处

2. 特点

1.3 redo的组成

1.4 redo的整体流程

1.5 redo log的刷盘策略

1.6 不同刷盘策略演示

1. 流程图

​编辑2. 举例

1.7 写入redo log buffer 过程

1.8 redo log file 

1. 相关参数设置

2. 日志文件组

3. checkpoint

2. Undo日志 

2.1 如何理解Undo日志

2.2 Undo日志的作用

2.3 undo的存储结构

1. 回滚段与undo页

2. 回滚段与事务

3. 回滚段中的数据分类

2.4 undo的类型

2.5 undo log的生命周期

1. 简要生成过程

2. 详细生成过程

3. undo log是如何回滚的

4. undo log的删除

2.6 小结

事务有4种特性:原子性、一致性、隔离性和持久性。那么事务的四种特性到底是基于什么机制实现呢?

  • 事务的隔离性由 锁机制 实现。
  • 而事务的原子性、一致性和持久性由事务的 redo 日志和undo 日志来保证。
    • REDO LOG 称为 重做日志 ,提供再写入操作,恢复提交事务修改的页操作,用来保证事务的持 久性。
    • UNDO LOG 称为 回滚日志 ,回滚行记录到某个特定版本,用来保证事务的原子性、一致性。

有的DBA或许会认为 UNDO 是 REDO 的逆过程,其实不然。

1. redo日志

1.1 为什么需要REDO日志

一方面,缓冲池可以帮助我们消除CPU和磁盘之间的鸿沟,checkpoint机制可以保证数据的最终落盘,然 而由于checkpoint 并不是每次变更的时候就触发 的,而是master线程隔一段时间去处理的。所以最坏的情 况就是事务提交后,刚写完缓冲池,数据库宕机了,那么这段数据就是丢失的,无法恢复。

另一方面,事务包含 持久性 的特性,就是说对于一个已经提交的事务,在事务提交后即使系统发生了崩 溃,这个事务对数据库中所做的更改也不能丢失。

那么如何保证这个持久性呢? 一个简单的做法 :在事务提交完成之前把该事务所修改的所有页面都刷新 到磁盘,但是这个简单粗暴的做法有些问题

另一个解决的思路 :我们只是想让已经提交了的事务对数据库中数据所做的修改永久生效,即使后来系 统崩溃,在重启后也能把这种修改恢复出来。所以我们其实没有必要在每次事务提交时就把该事务在内 存中修改过的全部页面刷新到磁盘,只需要把 修改 了哪些东西 记录一下 就好。比如,某个事务将系统 表空间中 第10号 页面中偏移量为 100 处的那个字节的值 1 改成 2 。我们只需要记录一下:将第0号表 空间的10号页面的偏移量为100处的值更新为 2 。

1.2 REDO日志的好处、特点

1. 好处

  • redo日志降低了刷盘频率
  • redo日志占用的空间非常小

2. 特点

  • redo日志是顺序写入磁盘的
  • 事务执行过程中,redo log不断记录

1.3 redo的组成

Redo log可以简单分为以下两个部分:

  • 重做日志的缓冲 (redo log buffer) ,保存在内存中,是易失的。

参数设置:innodb_log_buffer_size:

redo log buffer 大小,默认 16M ,最大值是4096M,最小值为1M。

  • 重做日志文件 (redo log file) ,保存在硬盘中,是持久的。

1.4 redo的整体流程

以一个更新事务为例,redo log 流转过程,如下图所示:

第1步:先将原始数据从磁盘中读入内存中来,修改数据的内存拷贝

第2步:生成一条重做日志并写入redo log buffer,记录的是数据被修改后的值

第3步:当事务commit时,将redo log buffer中的内容刷新到 redo log file,对 redo log file采用追加 写的方式

第4步:定期将内存中修改的数据刷新到磁盘中

体会: Write-Ahead Log(预先日志持久化):在持久化一个数据页之前,先将内存中相应的日志页持久化。

1.5 redo log的刷盘策略

redo log的写入并不是直接写入磁盘的,InnoDB引擎会在写redo log的时候先写redo log buffer,之后以 一 定的频率 刷入到真正的redo log file 中。这里的一定频率怎么看待呢?这就是我们要说的刷盘策略。

注意,redo log buffer刷盘到redo log file的过程并不是真正的刷到磁盘中去,只是刷入到 文件系统缓存 (page cache)中去(这是现代操作系统为了提高文件写入效率做的一个优化),真正的写入会交给系 统自己来决定(比如page cache足够大了)。那么对于InnoDB来说就存在一个问题,如果交给系统来同 步,同样如果系统宕机,那么数据也丢失了(虽然整个系统宕机的概率还是比较小的)。

针对这种情况,InnoDB给出 innodb_flush_log_at_trx_commit 参数,该参数控制 commit提交事务 时,如何将 redo log buffer 中的日志刷新到 redo log file 中。它支持三种策略:

  • 设置为0 :表示每次事务提交时不进行刷盘操作。(系统默认master thread每隔1s进行一次重做日 志的同步)
  • 设置为1 :表示每次事务提交时都将进行同步,刷盘操作( 默认值
  • 设置为2 :表示每次事务提交时都只把 redo log buffer 内容写入 page cache,不进行同步。由os自 己决定什么时候同步到磁盘文件。

1.6 不同刷盘策略演示

1. 流程图

2. 举例

1.7 写入redo log buffer 过程

1. 补充概念:Mini-Transaction

一个事务可以包含若干条语句,每一条语句其实是由若干个 mtr 组成,每一个 mtr 又可以包含若干条 redo日志,画个图表示它们的关系就是这样:

2. redo 日志写入log buffer

每个mtr都会产生一组redo日志,用示意图来描述一下这些mtr产生的日志情况:

3. redo log block的结构图

 

1.8 redo log file 

1. 相关参数设置

  • innodb_log_group_home_dir :指定 redo log 文件组所在的路径,默认值为 ./ ,表示在数据库 的数据目录下。MySQL的默认数据目录( var/lib/mysql )下默认有两个名为 ib_logfile0 ib_logfile1 的文件,log buffer中的日志默认情况下就是刷新到这两个磁盘文件中。此redo日志 文件位置还可以修改。
  • innodb_log_files_in_group:指明redo log file的个数,命名方式如:ib_logfile0,iblogfile1... iblogfilen。默认2个,最大100个。
mysql> show variables like 'innodb_log_files_in_group';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| innodb_log_files_in_group | 2 |
+---------------------------+-------+
#ib_logfile0
#ib_logfile1
  • innodb_flush_log_at_trx_commit:控制 redo log 刷新到磁盘的策略,默认为1。
  • innodb_log_file_size:单个 redo log 文件设置大小,默认值为 48M 。最大值为512G,注意最大值 指的是整个 redo log 系列文件之和,即(innodb_log_files_in_group * innodb_log_file_size )不能大 于最大值512G。
mysql> show variables like 'innodb_log_file_size';
+----------------------+----------+
| Variable_name | Value |
+----------------------+----------+
| innodb_log_file_size | 50331648 |
+----------------------+----------+

根据业务修改其大小,以便容纳较大的事务。编辑my.cnf文件并重启数据库生效,如下所示

[root@localhost ~]# vim /etc/my.cnf
innodb_log_file_size=200M

2. 日志文件组

总共的redo日志文件大小其实就是: innodb_log_file_size × innodb_log_files_in_group 。 采用循环使用的方式向redo日志文件组里写数据的话,会导致后写入的redo日志覆盖掉前边写的redo日 志?当然!所以InnoDB的设计者提出了checkpoint的概念。

3. checkpoint

如果 write pos 追上 checkpoint ,表示日志文件组满了,这时候不能再写入新的 redo log记录,MySQL 得 停下来,清空一些记录,把 checkpoint 推进一下。

2. Undo日志 

redo log是事务持久性的保证,undo log是事务原子性的保证。在事务中 更新数据前置操作 其实是要 先写入一个 undo log

2.1 如何理解Undo日志

事务需要保证 原子性 ,也就是事务中的操作要么全部完成,要么什么也不做。但有时候事务执行到一半 会出现一些情况,比如:

  • 情况一:事务执行过程中可能遇到各种错误,比如 服务器本身的错误操作系统错误 ,甚至是突 然 断电 导致的错误。
  • 情况二:程序员可以在事务执行过程中手动输入 ROLLBACK 语句结束当前事务的执行。

以上情况出现,我们需要把数据改回原先的样子,这个过程称之为 回滚 ,这样就可以造成一个假象:这 个事务看起来什么都没做,所以符合 原子性 要求。

2.2 Undo日志的作用

  • 作用1:回滚数据
  • 作用2:MVCC

2.3 undo的存储结构

1. 回滚段与undo页

InnoDB对undo log的管理采用段的方式,也就是 回滚段(rollback segment) 。每个回滚段记录了 1024 undo log segment ,而在每个undo log segment段中进行 undo页 的申请。

  • InnoDB1.1版本之前 (不包括1.1版本),只有一个rollback segment,因此支持同时在线的事务 限制为 1024 。虽然对绝大多数的应用来说都已经够用。
  • 从1.1版本开始InnoDB支持最大 128个rollback segment ,故其支持同时在线的事务限制提高到 了 128*1024
mysql> show variables like 'innodb_undo_logs';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| innodb_undo_logs | 128 |
+------------------+-------+

2. 回滚段与事务

  1. 每个事务只会使用一个回滚段,一个回滚段在同一时刻可能会服务于多个事务。
  2. 当一个事务开始的时候,会制定一个回滚段,在事务进行的过程中,当数据被修改时,原始的数 据会被复制到回滚段。
  3. 在回滚段中,事务会不断填充盘区,直到事务结束或所有的空间被用完。如果当前的盘区不够 用,事务会在段中请求扩展下一个盘区,如果所有已分配的盘区都被用完,事务会覆盖最初的盘 区或者在回滚段允许的情况下扩展新的盘区来使用。
  4. 回滚段存在于undo表空间中,在数据库中可以存在多个undo表空间,但同一时刻只能使用一个 undo表空间。
  5. 当事务提交时,InnoDB存储引擎会做以下两件事情:
    1. 将undo log放入列表中,以供之后的purge操作  
    2. 判断undo log所在的页是否可以重用,若可以分配给下个事务使用

3. 回滚段中的数据分类

  1. 未提交的回滚数据(uncommitted undo information) 
  2. 已经提交但未过期的回滚数据(committed undo information) 
  3. 事务已经提交并过期的数据(expired undo information)

2.4 undo的类型

在InnoDB存储引擎中,undo log分为:

  • insert undo log
  • update undo log

2.5 undo log的生命周期

1. 简要生成过程

只有Buffer Pool的流程:

有了Redo Log和Undo Log之后:

2. 详细生成过程

 当我们执行INSERT时:

begin

INSERT INTO user (name) VALUES ("tom")

当我们执行UPDATE时:

UPDATE user SET id=2 WHERE id=1

3. undo log是如何回滚的

以上面的例子来说,假设执行rollback,那么对应的流程应该是这样:

  1. 通过undo no=3的日志把id=2的数据删除
  2. 通过undo no=2的日志把id=1的数据的deletemark还原成0
  3. 通过undo no=1的日志把id=1的数据的name还原成Tom
  4. 通过undo no=0的日志把id=1的数据删除

4. undo log的删除

  • 针对于insert undo log

 因为insert操作的记录,只对事务本身可见,对其他事务不可见。故该undo log可以在事务提交后直接删 除,不需要进行purge操作。

  • 针对于update undo log

该undo log可能需要提供MVCC机制,因此不能在事务提交时就进行删除。提交时放入undo log链表,等 待purge线程进行最后的删除。

2.6 小结

undo log是逻辑日志,对事务回滚时,只是将数据库逻辑地恢复到原来的样子。

redo log是物理日志,记录的是数据页的物理变化,undo log不是redo log的逆过程。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2809325.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

初识Lombok

前言 最近读一些公司的业务代码,发现近几年的java项目工程中都使用了lombok,lombok是一个可以自动生成get,set、toString等模板类方法的工具框架,程序再引入lombok后,添加一个注解便可以不写get\set\toString等方法。 Lombok示例…

DALL-E 系列 (1-3)

DALL-E 系列 (1-3) 本文主要梳理 DALL-E 系列图像生成模型的整体框架,相关论文中都包含了丰富的训练、优化细节,对这些细节本文不做过多介绍,有兴趣的读者可以阅读原文。注意,在阅读本文之前,最好先了解 VAE、VQVAE、…

SQL进阶(三):Join 小技巧:提升数据的处理速度

复杂数据结构处理:Join 小技巧:提升数据的处理速度 本文是在原本sql闯关的基础上总结得来,加入了自己的理解以及疑问解答(by GPT4) 原活动链接 用到的数据:链接 提取码:l03e 目录 1. 课前小问…

静态时序分析:SDC约束命令set_load详解

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 set_load命令用于指定端口(port)或线网(net)的负载电容,该指令的BNF范式(有关BNF范式,可以参考以往文章)为&#…

锂电池SOC估计 | PyTorch实现基于Basisformer模型的锂电池SOC估计

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 PyTorch实现基于Basisformer模型的锂电池SOC估计 锂电池SOC估计,全新【Basisformer】时间序列预测 1.采用自适应监督自监督对比学习方法学习时序特征; 2.通过双向交叉注意力机制计算历史序列和…

计算机网络面经-TCP的拥塞控制

写在前边 前边我们分享了网络分层协议、TCP 三次握手、TCP 四次分手。今天我们继续深入分享一下 TCP 中的拥塞控制。 对于 TCP 的拥塞控制,里边设计到很多细节,平平无奇的羊希望通过这一节能够将这部分内容串通起来,能够让你更深刻的记忆这部分内容。 思维导图 1、什么…

嵌入式学习 Day 23

一. 进程基本概念: 1.进程: 程序:存放在外存中的一段数据组成的文件 进程:是一个程序动态执行的过程,包括进程的创建、进程的调度、进程的消亡 2.进程相关命令: 1.top 动态查看当前系统中的所有进程信息(根据CPU占用率排序)…

Java/Python/Go不同开发语言基础数据结构和相关操作总结-GC篇

Java/Python/Go不同开发语言基础数据结构和相关操作总结 1. 常见gc方式1.1 gc判断对象是否存活1.2 引用计数法1.2 标记-清除算法1.3 复制算法1.4 标记-压缩算法1.5 分代收集算法 2. java的gc方式以及垃圾回收器2.1 gc方式2.1 gc回收器2.1.1 Serial收集器2.1.2 ParNew收集器2.1.…

成长优化算法(Growth Optimizer,GO)求解不闭合MD-MTSP(提供MATLAB代码)

一、成长优化算法介绍 成长优化算法(Growth Optimizer,GO)由Qingke Zhang等人于2023年提出,该算法的设计灵感来源于个人在成长过程中的学习和反思机制。学习是个人通过从外部世界获取知识而成长的过程,反思是检查个体…

手写myscrapy(五)

项目地址:https://gitee.com/wyu_001/myscrapy 我们继续完成返回的处理类 MyResponse的实现 先上类图: 主要功能: json() 方法解析返回的json格式内容,转换为 python 的json对象 xpath()方法解析返回的html格式的内…

LabVIEW和Python开发微细车削控制系统

LabVIEW和Python开发微细车削控制系统 为满足现代精密加工的需求,开发了一套基于LabVIEW和Python的微细车削控制系统。该系统通过模块化设计,实现了高精度的加工控制和G代码的自动生成,有效提高了微细车削加工的自动化水平和编程效率。 项目…

微服务-微服务Spring Security OAuth 2实战

1. Spring Authorization Server 是什么 Spring Authorization Server 是一个框架,它提供了 OAuth 2.1 和 OpenID Connect 1.0 规范以及其他相关规范的实现。它建立在 Spring Security 之上,为构建 OpenID Connect 1.0 身份提供者和 OAuth2 授权服务器产…

区分服务 DiffServ

目录 区分服务 DiffServ 区分服务的基本概念 区分服务 DiffServ 的要点 每跳行为 PHB DiffServ 定义的两种 PHB 区分服务 DiffServ 区分服务的基本概念 由于综合服务 IntServ 和资源预留协议 RSVP 都较复杂,很难在大规模的网络中实现,因此 IET…

挑战杯 基于机器学习与大数据的糖尿病预测

文章目录 1 前言1 课题背景2 数据导入处理3 数据可视化分析4 特征选择4.1 通过相关性进行筛选4.2 多重共线性4.3 RFE(递归特征消除法)4.4 正则化 5 机器学习模型建立与评价5.1 评价方式的选择5.2 模型的建立与评价5.3 模型参数调优5.4 将调参过后的模型重…

vulnhub靶场---->DOUBLETROUBLE: 1

详细思路 知识点1.网段探测2.nmap扫描3.目录扫描4.隐写5.上传木马文件6.awk提权 知识点 图片隐写----->steghide 密码爆破----->stegseek awk提权------>sudo awk BEGIN {system("/bin/bash")}1.网段探测 kali:192.168.0.131 靶机:192.168.0.1…

【小沐学QT】QT学习之Web控件的使用

文章目录 1、简介1.1 Qt简介1.2 Qt下载和安装1.3 Qt快捷键1.4 Qt帮助 2、QtWeb控件2.1 测试代码1(QApplication)2.2 测试代码2(QApplicationQWidget)2.3 测试代码3(QApplicationQMainWindow)2.4 测试代码4&…

Spring事务模板及afterCommit存在的坑

大家好,我是墨哥(隐墨星辰)。今天的内容来源于两个线上问题,主要和大家聊聊为什么支付系统中基本只使用事务模板方法,而不使用声明式事务Transaction注解,以及使用afterCommit()出现连接未按预期释放导致的…

AI赋能Oracle DBA:以自然语言与Oracle数据库互动

DBA AI助手:以自然语言与Oracle数据库互动 0. 引言1. AI赋能Oracle DBA的优势2. AI如何与Oracle数据库交互3. 自然语言查询的一些示例4. 未来展望 0. 引言 传统的Oracle数据库管理 (DBA) 依赖于人工操作,包括编写复杂的SQL语句、分析性能指标和解决各种…

项目解决方案:街道社区视频监控接入、汇聚和联网设计方案

目 录 一、客户需求 二、网络拓扑图 三、方案描述 四、系统配置 1、服务器配置 2、带宽配置 五、方案优势 1. 平台可堆叠使用 2. 支持主流接入协议 4. 多种终端显示 5. 客户端功能强大 6. 一机一档 一、客户需求 1,一个街道有十个社…

计算机设计大赛 深度学习图像风格迁移 - opencv python

文章目录 0 前言1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习图像风格迁移 - opencv python 该项目较为新颖,适合作为竞赛课题…