海豚调度DolphinScheduler入门学习

DS简介:

     DolphinScheduler 是一款分布式的、易扩展的、高可用的数据处理平台,主要包含调度中心、元数据管理、任务编排、任务调度、任务执行和告警等模块。其技术架构基于 Spring Boot 和 Spring Cloud 技术栈,采用了分布式锁、分布式任务队列等技术确保任务高可用性。部署灵活,支持单机部署、分布式部署、容器化部署等方式。应用场景广泛,可用于大数据处理、定时任务和流程管理等领域。具有易扩展性、高可用性、多语言支持、易用性和活跃的开发社区等技术优势。支持二次开发和插件机制,可以与其他大数据处理框架无缝集成。已被阿里巴巴、腾讯、美团、京东等大型互联网公司广泛使用,市场前景广阔,未来发展可期。可为BI和AI应用提供数据支持。

一、系统架构

        

        

        DolphinScheduler 是一款分布式的、易扩展的、高可用的数据处理平台。它主要包含了调度中心、元数据管理、任务编排、任务调度、任务执行和告警等模块。

        其中,调度中心是 DolphinScheduler 的核心模块,提供了用户操作界面,支持 DAG 编排任务,同时也是任务调度的控制中心,负责任务的调度、监控和告警。元数据管理模块是         DolphinScheduler 的元数据存储引擎,负责存储和管理任务的元数据信息,以及提供元数据查询 API 接口。

        任务编排模块提供了 DAG 图编辑器,支持图形化的 DAG 编排,让任务编排更加直观。

        任务调度模块是 DolphinScheduler 的核心模块,负责任务的调度,同时也支持手动调度和定时调度。

        任务执行模块是负责执行任务的模块,支持多种不同的任务类型,包括 Hadoop、Spark、Flink 等大数据处理框架。

        告警模块是 DolphinScheduler 支持的一个重要特性,可以在任务出现异常或者发生故障时进行告警。

二、技术架构

        

        DolphinScheduler 的技术架构主要由以下几个模块组成:

  1. Master Server(调度中心): Master Server 是 DolphinScheduler 的核心模块,负责整个系统的调度和控制。它管理任务的调度逻辑,监控任务的执行情况,并负责任务的告警和监控。Master Server 采用分布式架构,能够实现横向扩展,保证了系统的高可用性和可靠性。

  2. ZooKeeper(元数据管理): DolphinScheduler 使用 ZooKeeper 作为元数据管理模块,用于存储和管理任务的元数据信息,以及提供元数据查询 API 接口。ZooKeeper 提供了分布式协调服务,用于实现分布式锁、选举等功能,保证了系统的一致性和可靠性。

  3. API Server(任务编排与调度): API Server 提供了任务编排和任务调度的接口服务,用户可以通过 API Server 提供的接口进行 DAG 编排、任务调度等操作。API Server 还负责将用户提交的任务请求转发给 Master Server 进行处理,并返回执行结果给用户。

  4. Alert Server(告警模块): Alert Server 负责系统告警功能,当任务出现异常或者发生故障时,Alert Server 会发送告警通知给相关人员或系统,以便及时处理。

  5. Worker Server(任务执行): Worker Server 负责执行任务的模块,支持多种不同的任务类型,包括 Hadoop、Spark、Flink 等大数据处理框架。Worker Server 接收来自 Master Server 的任务调度请求,执行具体的任务逻辑,并将执行结果返回给 Master Server。

        这些模块共同组成了 DolphinScheduler 的技术架构,实现了任务的调度、编排、执行和监控,保证了系统的高可用性和可靠性。

        DolphinScheduler 的技术架构采用了分布式架构,基于 Spring Boot 和 Spring Cloud 技术栈构建而成,同时还采用了一些开源技术,包括 ZooKeeper、MySQL、Redis、Elasticsearch 等。DolphinScheduler 使用了分布式锁、分布式任务队列等技术,保证了任务的高可用性和可靠性。

        DolphinScheduler 还支持多种数据源,包括 MySQL、Oracle、PostgreSQL 等关系型数据库,以及 Hadoop、Hive、Spark、Flink 等大数据处理框架。

三、部署架构

        

        DolphinScheduler 的部署架构非常灵活,支持单机部署、分布式部署、容器化部署等多种方式。在单机部署中,可以通过 Docker 镜像或者二进制包的方式进行部署;在分布式部署中,可以通过 Kubernetes 或者 Mesos 等容器编排技术进行部署。

四、应用场景

        

        DolphinScheduler 主要应用于大数据处理领域,可以支持 Hadoop、Hive、Spark、Flink 等多种数据处理框架。它可以帮助企业实现数据处理的自动化,并提高数据处理的效率和准确性。除此之外,DolphinScheduler 还可以应用于各种定时任务和流程管理。

        五、技术优势

DolphinScheduler 具有以下几个技术优势:

  1. 易扩展性:DolphinScheduler 的分布式架构可以轻松实现扩展,根据实际业务需求进行灵活配置。

  2. 高可用性:DolphinScheduler 采用了分布式锁、分布式任务队列等技术,保证了任务的高可用性和可靠性。

  3. 多语言支持:DolphinScheduler 支持多种编程语言,包括 Java、Python、Scala 等,可以方便地集成到不同的应用场景中。

  4. 易用性:DolphinScheduler 提供了友好的 Web UI 用户界面,支持图形化的 DAG 编排,让任务编排更加直观。

  5. 社区活跃度:DolphinScheduler 的开发团队十分活跃,社区贡献者众多,社区版本更新迅速,能够及时解决用户反馈的问题,并提供新的功能特性。

六、功能模块

DolphinScheduler 主要包含以下功能模块:

  1. 调度中心:提供了用户操作界面,支持 DAG 编排任务,是任务调度的控制中心,负责任务的调度、监控和告警。

  2. 元数据管理:存储和管理任务的元数据信息,提供元数据查询 API 接口。

  3. 任务编排:提供了 DAG 图编辑器,支持图形化的 DAG 编排,让任务编排更加直观。

  4. 任务调度:负责任务的调度,同时也支持手动调度和定时调度。

  5. 任务执行:负责执行任务的模块,支持多种不同的任务类型,包括 Hadoop、Spark、Flink 等大数据处理框架。

  6. 告警模块:在任务出现异常或者发生故障时进行告警。

七、部署方式

DolphinScheduler 的部署方式包括以下几种:

  1. 单机部署:可以通过 Docker 镜像或者二进制包的方式进行部署。

  2. 分布式部署:可以通过 Kubernetes 或者 Mesos 等容器编排技术进行部署。

  3. 容器化部署:支持 Docker 容器化部署,方便快捷。

八、二次开发

        DolphinScheduler 支持二次开发,用户可以根据自己的业务需求进行扩展和定制。DolphinScheduler 提供了完善的开发文档和 API 接口,方便用户进行二次开发。此外,DolphinScheduler 还提供了插件机制,用户可以根据自己的需求自定义插件,并且方便地集成到 DolphinScheduler 中。

九、集成方式

        

        DolphinScheduler 支持多种集成方式,可以与其他大数据处理框架进行无缝集成。例如,可以与 Hadoop、Hive、Spark、Flink 等数据处理框架进行集成,实现数据的自动化处理和调度。

十、社区活跃度

        DolphinScheduler 的开发团队十分活跃,社区贡献者众多,社区版本更新迅速,能够及时解决用户反馈的问题,并提供新的功能特性。此外,DolphinScheduler 还有一个非常活跃的社区,用户可以在社区中交流经验、分享资源、解决问题。

十一、哪些大公司在使用

        

        DolphinScheduler 目前已经得到了国内外很多大型互联网公司的广泛应用,包括阿里巴巴、腾讯、美团、京东、滴滴等。

十二、市场前景

        随着大数据技术的不断发展,企业对于数据处理的需求也越来越高。DolphinScheduler 作为一款分布式的、易扩展的、高可用的数据处理平台,具备很强的市场竞争力。据市场研究机构预测,未来几年大数据处理领域的市场规模将会持续扩大,DolphinScheduler 有望成为该领域的重要参与者。

十三、未来发展

        

        未来,DolphinScheduler 将继续保持活跃的开发态势,不断增加新的功能特性,提高系统的稳定性和可靠性。同时,DolphinScheduler 还将继续推进对更多数据处理框架的支持,以及更加灵活的部署方式和集成方式,为用户提供更加优秀的产品体验。

十四、BI与AI应用

        DolphinScheduler 可以作为大数据处理平台的一部分,为 BI(商业智能)和 AI(人工智能)应用提供支持。通过 DolphinScheduler,企业可以将数据处理自动化,提高数据处理效率,进而为 BI 和 AI 应用提供更加准确、可靠的数据支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2808725.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

你要不要搞副业

最近看到了几个网友关于年轻人要不要搞副业的一点讨论,学习到了很多。整理分享如下: plantegg 你要不要搞副业? 最近网上看到很多讨论搞副业和远程工作的,我也说点自己的经验看法 当然这完全是出于个人认知肯定不是完全对的、也…

[python pip] A new release of pip is available: 23.2.1 -> 24.0

翻译之后:〔通知〕新版本的pip可用:23.2.1->24.0 就是说,你的pip版本需要从当前的 23.2.1 升级到最新版本 24.0,执行如下命令: cmd命令以管理员身份进入目录 ${Python}\Python3.12.1\Scripts下,执行 p…

mysql group by分组后查询无数据补0

mysql经常会用到Group By来进行分组查询,但也经常会遇到一个问题,就是不满足条件的数据就不会显示,如图总共有五个业务,业务状态为3的就不会显示: 因此,想要实现,即使没有数据,也想让count显示出0而不是空的效果&…

数据结构2月25日

第一道: 第二道: 1、插入到prev和next中间 1.new(struct list_head*)malloc(sizeof(struct list_head*)); if(newNULL) { printf("失败\n"); return; } new->nextprev->next; prev->nextnew; return; 2、删除prve和next…

3.WEB渗透测试-前置基础知识-快速搭建渗透环境(上)

上一个内容:2.WEB渗透测试-前置基础知识-web基础知识和操作系统-CSDN博客 1.安装虚拟机系统 linux Kali官网下载地址: https://www.kali.org/get-kali/#kali-bare-metal Centos官网下载地址: https://www.centos.org/download/ Deepin官网下…

Sora 横空出世!国内一批创新公司要挂了吗?

2月16日凌晨,OpenAI 发布了自己的首个AI视频生成模型—Sora,这是一个历史性的里程碑,扩散模型结合OpenAI大获成功的transformer,在视觉领域实现了与大语言模型类似的突破。毫无疑问,视觉生成领域将有一次大的技术和商业…

一种基于道路分类特性的超快速车道检测算法

摘要: 本文介绍了一种新颖、简单但有效的车道检测公式。 车道检测是自动驾驶和高级驾驶员辅助系统 (ADAS) 的基本组成部分,在实际高阶驾驶辅助应用中,考虑车道保持、转向、限速等相关的控制问题,这种方式通常是通过受限的车辆计算…

《真象还原》读书笔记——第七章 中断处理

7.1 中断是什么,为什么中断 中断可以并发执行多个程序,提升系统利用率。 并发是单位时间内的积累工作量并行是真正同时进行的工作量 有了中断,我们才能一边使用键盘一边使用鼠标。 7.2 操作系统是中断驱动的 是操作系统是被动工作的&…

linux之前后端项目部署与发布

目录 前言 简介 一、安装Nginx 二、后端部署 2.1多个tomcat负载均衡 2.2 负载均衡 2.3 后端项目部署 三、前端部署 1.解压前端 2.Nginx配置文件修改 3.IP域名映射 4.重启Nginx服务 前言 上篇博主已经讲解过了单机项目的部署linux之JAVA环境配置JDK&Tomcat&a…

KDD 2023 图神经网络方向论文总结

ACM SIGKDD(国际数据挖掘与知识发现大会,KDD)是数据挖掘领域历史最悠久、规模最大的国际顶级学术会议,也是首个引入大数据、数据科学、预测分析、众包等概念的会议。今年,第29届 KDD 大会在美国加州长滩举行&#xff0…

YOLO如何训练自己的模型

目录 步骤 一、打标签 二、数据集 三、跑train代码出模型 四、跑detect代码出结果 五、详细操作 步骤 一、打标签 (1)在终端 pip install labelimg (2)在终端输入labelimg打开 如何打标签: 推荐文章&#xf…

【初始RabbitMQ】延迟队列的实现

延迟队列概念 延迟队列中的元素是希望在指定时间到了之后或之前取出和处理消息,并且队列内部是有序的。简单来说,延时队列就是用来存放需要在指定时间被处理的元素的队列 延迟队列使用场景 延迟队列经常使用的场景有以下几点: 订单在十分…

蓝桥杯备战刷题(自用)

1.被污染的支票 #include <iostream> #include <vector> #include <map> #include <algorithm> using namespace std; int main() {int n;cin>>n;vector<int>L;map<int,int>mp;bool ok0;int num;for(int i1;i<n;i){cin>>nu…

Redis实现滑动窗口限流

常见限流算法 固定窗口算法 在固定的时间窗口下进行计数&#xff0c;达到阈值就拒绝请求。固定窗口如果在窗口开始就打满阈值&#xff0c;窗口后半部分进入的请求都会拒绝。 滑动窗口算法 在固定窗口的基础上&#xff0c;窗口会随着时间向前推移&#xff0c;可以在时间内平滑控…

HUAWEI Programming Contest 2024(AtCoder Beginner Contest 342)

D - Square Pair 题目大意 给一长为的数组&#xff0c;问有多少对&#xff0c;两者相乘为非负整数完全平方数 解题思路 一个数除以其能整除的最大的完全平方数&#xff0c;看前面有多少个与其余数相同的数&#xff0c;两者乘积满足条件&#xff08;已经是完全平方数的部分无…

C#,动态规划(DP)模拟退火(Simulated Annealing)算法与源代码

1 模拟退火 *问题:**给定一个成本函数f:r^n–>r*&#xff0c;找到一个 n 元组&#xff0c;该元组最小化 f 的值。请注意&#xff0c;最小化函数值在算法上等同于最大化(因为我们可以将成本函数重新定义为 1-f)。 很多有微积分/分析背景的人可能都熟悉单变量函数的简单优化。…

深度学习手写字符识别:推理过程

说明 本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。 第一个深度学习实例手写字符识别 深度学习环境配置 可以参考下篇博客&#xff0c;网上也有很多教程&#xff0c;很容易搭建好深度学习的环境。 Windows11搭建GPU版本PyTorch环境详细过程 数…

万字长文带你由浅入深夯实ARM汇编基础——汇编指令及寻址方式最全梳理(附示例)!

《嵌入式工程师自我修养/C语言》系列——由浅入深夯实ARM汇编基础&#xff0c;汇编指令及寻址方式梳理&#xff08;附示例&#xff09;&#xff01; 一、引言二、ARM汇编语言2.1 ARM汇编的特点2.2 ARM指令集格式标准2.2.1 机器指令格式2.2.2 汇编指令格式 三、ARM寻址方式3.1 立…

如何做到三天内完成智能直流伺服电机系统开发?

适应EtherCAT/CANopen协议三相伺服电机直流伺服电机直线伺服音圈电机 如何开发高性能直流伺服电机驱动控制器&#xff1f; 需要熟悉高性能单片机&#xff08;至少是ARM或DSP水平的&#xff09;&#xff0c;需要掌握空间磁场矢量控制FOC&#xff0c;需要掌握运动轨迹算法……此…

谁是单身狗?——C语言刷题

创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 单身狗1 题述 在一个整型数组中&#xff0c;只有一个数字出现一次&#xff0c;其他数组都是成对出现的&#xff0c;请找出那个只出现一次的数字。 例如&#xff1a; 数组中有&#xff1a;1 2 3 4 5 1 2 3 4&a…