新改进!基于改进粒子群算法的微网/综合能源系统多目标优化调度程序代码!

适用平台:Matlab+Yalmip+Cplex

程序提出了一种综合考虑微电网系统运行成本和环境保护成本的并网模式下微电网多目标优化调度模型,采用改进的粒子群算法对优化模型进行求解。程序算例丰富、注释清晰、干货满满,可扩展性和创新性很高!下面对文章和程序做简要介绍!

程序创新点:

PSO算法的性能受参数的选择影响。传统PSO算法的惯性权重因子和学习因子是固定不变的,容易陷入局部最优值。针对这一缺点,从惯性权重因子和学习因子两个方面对粒子群算法进行了改进。

主要工作:

微电网优化调度作为智能电网优化的重要组成部分,对降低能耗、环境污染具有重要意义。微电网的发展目标既要满足电力供应的基本需求,又要提高经济效益和环境保护。对此,提出了一种综合考虑微电网系统运行成本和环境保护成本的并网模式下微电网多目标优化调度模型。同时采用改进的粒子群算法对优化模型进行求解。仿真结果表明,该模型可以有效降低用户的用电成本和环境污染,促进微电网的优化运行,并验证了改进的粒子群算法的优越性能。

粒子群算法简介:

粒子群优化算法具有参数设置少,搜索速度快,易于工程实现的优点,广泛应用于神经网络训练程应用领域和随机优化类型等问题的求解。

粒子群算法是一种启发式进化计算技术,来源于对简化社会群体智能行为模型的模拟,是由Kennedy和Eberhart提出的一种进化计算方法,由于该算法具有搜索速度快,简单等一系列特点,已经成功应用于多目标优化问题,被认为是求解多目标优化问题最具潜力的方法之一,主要通过参数设置,与其他算法融合等方式进行研究,将算法不断的优化。

基本步骤:

PSO算法是对生物种群觅食行为的仿真,算法描述了数量为N的生物在空间中以不同的速度运动,每只鸟的飞行速度和运动方向,依赖于自身和生物群体的经验,在每一维空间中的速度和运动方向按下式调整:

粒子在多维空间中改变速度以及下一次运动方向的公式如下:

可以得到粒子i在第d维空间中的位置如下:

程序结果:

本程序含两个版本,其一是传统粒子群优化方法,结果如下:

其二是改进粒子群优化方法,结果如下:

部分程序:

%% 第1种.将两个目标函数值归一化相加,取相加后最小的目标值的粒子,即寻找折衷解并画图
%将非支配解中的运行成本和环境保护成本分别赋值给yyy,xxx​
% yyy(i)= mm.swarm(1,i).cost(1);xxx(i)= mm.swarm(1,i).cost(2);​
% m1=max(yyy);m2=max(xxx);​
​object(i)= mm.swarm(1,i).cost(1)./m1+ mm.swarm(1,i).cost(2)./m2;
​f1(i)=mm.swarm(1,i).cost(1)./m1;
f2(i)=mm.swarm(1,i).cost(2)./m2;​
% [m,p]=min(object); %得到有着最小目标值的微粒所在的行数P
% pg=mm.swarm(1,p).x; %pg为折衷解
% Title = sprintf('折衷解情况下');
%% 第2种寻找总成本最低时的解并画图​
object(i)= mm.swarm(1,i).cost(1)+ mm.swarm(1,i).cost(2);​
[m,p]=min(object); %得到有着最小目标值的微粒所在的行数P
pg=mm.swarm(1,p).x; %pg为总成本最低时的解
Title = sprintf('总成本最低情况下');
%% 第3种寻找运行成本最低时的解并画图​
%object(i)= mm.swarm(1,i).cost(1);​
% [m,p]=min(object); %得到有着最小目标值的微粒所在的行数P
% pg=mm.swarm(1,p).x; %pg为运行成本最低时的解
% Title = sprintf('运行成本最低情况下');
%% 第4种寻找环境保护成本最低时的解并画图​
%     object(i)= mm.swarm(1,i).cost(2);​
​% [m,p]=min(object); %得到有着最小目标值的微粒所在的行数P
% pg=mm.swarm(1,p).x; %pg为环境保护成本最低时的解
% Title = sprintf('环境保护成本最低情况下');

部分内容源自网络,侵权联系删除!

欢迎感兴趣的小伙伴关注并获取完整版代码,小编会不定期更新高质量的学习资料、文章和程序代码,为您的科研加油助力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2808330.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

readproc.h

Ubuntu22.04系统中 编译自己写的程序的时候,报错,显示找不到readproc.h文件,通过安装libprocps-dev解决 sudo apt install libprocps-dev

c#高级-正则表达式

正则表达式是由普通字符和元字符(特殊符号)组成的文字形式 应用场景 1.用于验证输入的邮箱是否合法。 2.用于验证输入的电话号码是否合法。 3.用于验证输入的身份证号码是否合法。等等 正则表达式常用的限定符总结: 几种常用的正则简写表达式…

女生常用的社交app软件有哪些?分享女生用的最多的社交软件

随着科技的迅猛发展,社交软件也日益多样化。除了常见的社交平台,一些全新的社交软件如雨后春笋般涌现,为用户带来了更多元、更有趣的社交体验。这里为大家介绍 5 款女生用的最多的社交软件,它们分别是丛丛、青藤之恋、meetu、小奢…

【Node.js】自动生成 API 文档

目录 1、直接使用swagger-ui-express 2、配合swagger-jsdoc 如何在Node.js项目中使用 Swagger 来自动生成 API接口文档,使用生成方式有很多种。本文基于swagger-jsdocswagger-ui-express快速实现 1、直接使用swagger-ui-express // 方便来浏览和测试api npm i sw…

分布式知识整理

分布式锁 以商场系统超卖现象举例 超卖现象一 现象: 商品卖出数量超出了库存数量。 产生原因: 扣减库存的动作在程序中进行,在程序中计算剩余库存,在并发场景下,导致库存计算错误。 代码复现 es.shutdown(); cycl…

二分算法(c++版)

二分的本质是什么? 很多人会认为单调性是二分的本质,但其实其本质并非单调性,只是说,有单调性的可以进行二分,但是有些题目没有单调性我们也可以进行二分。其本质其实是一个边界问题,给定一个条件&#xf…

2.WEB渗透测试-前置基础知识-web基础知识和操作系统

web基础知识 1.http协议 超文本传输协议是互联网上应用最广泛的一种网络协议。所有www文件都必须遵守的一个标准,是以 ASCII 码传输,建立在 TCP/IP 协议之上的应用层规范,通俗点说就是一种固定的通讯规则。 2、网络的三种架构及特点 网络应…

【C++STL】迭代器分类 失效问题

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…

堆排序、快速排序和归并排序

堆排序、快速排序和归并排序是所有排序中最重要的三个排序&#xff0c;也是难度最大的三个排序&#xff1b;所以本文单独拿这三个排序来讲解 目录 一、堆排序 1.建堆 2.堆排序 二、快速排序 1.思想解析 2.Hoare版找基准 3.挖坑法找基准 4.快速排序的优化 5.快速排序非…

自定义神经网络二之模型训练推理

文章目录 前言模型概念模型是什么&#xff1f;模型参数有哪些神经网络参数案例 为什么要生成模型模型的大小什么是大模型 模型的训练和推理模型训练训练概念训练过程训练过程中的一些概念 模型推理推理概念推理过程 总结 前言 自定义神经网络一之Tensor和神经网络 通过上一篇…

IOBR2 更新(学习自备)

IOBR查看其收录的相关基因集(自备)_肿瘤 tme特征 iobr-CSDN博客 IOBR2&#xff1a;多维度解析肿瘤微环境 - 知乎 (zhihu.com) 学习手册&#xff1a;https://iobr.github.io/book/ &#xff08;里面有详细教程&#xff09; 系统综合的分析工具&#xff08;Immuno-Oncology Bi…

学习python的第7天,她不再开放她的听歌榜单

我下午登录上小号&#xff0c;打开聊天消息看到了她的回复&#xff0c;我很开心兴奋&#xff0c;可是她不再开放她的听歌榜单了&#xff0c;我感觉得到&#xff0c;我要失恋了。 “因为当年电视上看没有王菲版本的” “行”。 “那你以后还会开放听歌榜单吗&#xff1f;”我…

opencv基础 python与c++

question: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib Opencv 一、读取图片 (1).imshow Mat imread(const string& filename, intflags1 );flags: enum { /* 8bit, color or not */CV_LOAD_IMAGE_UNCHANGED -1, /* 8bit, gray */CV_LOAD_I…

基于springboot+vue的大型商场应急预案管理系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

应用回归分析:非参数回归

非参数回归是一种统计方法&#xff0c;它在建模和分析数据时不假设固定的模型形式。与传统的参数回归模型不同&#xff0c;如线性回归和多项式回归&#xff0c;非参数回归不需要预先定义模型的结构&#xff08;例如&#xff0c;模型是否为线性或多项式&#xff09;。这使得非参…

小米标准模组+MCU 快速上手开发(一)——之固件下载

小米标准模组+MCU 开发笔记之固件下载 背景技术名词简介● 小米IoT开发者平台● 小米IoT 模组● ESP系列简介问题描述 + 解决方式问题1:固件下载是否有示例,如何下载到硬件板卡中?问题2:固件下载的官方程序是什么?在哪里?该如何使用?问题3:固件下载时,Flash和Ram 有什…

VCRUNTIME140_1.dll丢失是怎么回事,如何解决

当计算机系统中找不到vcruntime140_1.dll文件时&#xff0c;运行依赖于该文件的软件通常会显示错误消息&#xff0c;这类错误消息可能会包含以下几种形式&#xff1a; 明确提示缺失文件&#xff1a;错误信息可能直接指出“无法找到vcruntime140_1.dll”或“vcruntime140_1.dll…

怎么自学python,大概要多久?python多久上手?

无限时长~~~~技术不断在更新&#xff0c;你的自学不也需要一直进行吗&#xff1f; 但如果是问&#xff1a;自学多长时间可以入门&#xff1f;或者可以找到工作&#xff1f;那我可以告诉你答案。 从零基础开始自学Python&#xff0c;依照每个人理解能力的不同&#xff0c;大致…

no main manifest attribute, in app.jar

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…

软件工程复习笔记

一、软件工程概述 软件 = 程序 + 数据 + 相关文档 软件危机(Software Crisis) 指由于落后的软件生产方式无法满足迅速增长的计算机软件需求,从而导致软件开发与维护过程中出现一系列严重问题的现象。 软件工程三要素 方法、工具、过程 软件工程目标 在给定成本、进度的…