应用回归分析:非参数回归

非参数回归是一种统计方法,它在建模和分析数据时不假设固定的模型形式。与传统的参数回归模型不同,如线性回归和多项式回归,非参数回归不需要预先定义模型的结构(例如,模型是否为线性或多项式)。这使得非参数回归在处理复杂数据关系方面非常灵活,尤其是当我们不清楚数据之间的确切关系或当关系很难用简单的数学形式表达时。

非参数回归的优点

  1. 灵活性:非参数方法能够适应数据的结构,无论其复杂性如何。这意味着它们可以捕捉到数据中的非线性模式和结构,而不需要事先指定模型形式。
  2. 适用性广:适用于各种类型的数据和关系,包括连续和离散变量。
  3. 直观:非参数回归模型的结果通常更容易解释,因为它们直接从数据中得出,没有复杂的数学假设。

非参数回归的缺点

  1. 数据需求:非参数方法通常需要较大的样本量来准确估计模型,因为它们依赖于数据的局部特征。
  2. 计算成本:与参数方法相比,非参数方法在计算上可能更为昂贵,尤其是在处理大型数据集时。
  3. 过拟合风险:如果没有适当的平滑或正则化技术,非参数模型可能会过度适应数据中的随机噪声,导致泛化能力下降。

常用的非参数回归方法

  1. 核密度估计(Kernel Density Estimation, KDE):通过对独立观测值附近的密度进行平滑,KDE可以用来估计变量的概率密度函数。
  2. 局部加权散点图平滑(Locally Weighted Scatterplot Smoothing, LOWESS或LOESS):这是一种强大的非参数回归技术,可以用来拟合数据点的局部多项式回归,从而允许模型在不同区域具有不同的形状。
  3. 样条回归(Spline Regression):通过使用一系列多项式函数,样条回归可以在不同的数据段上拟合不同的多项式,从而允许模型在整个数据范围内保持平滑。

应用

非参数回归在许多领域都有应用,包括经济学、生物统计学、环境科学和社会科学等。它特别适用于模型预测、风险评估和趋势分析等任务。

示例代码

为了展示非参数回归的应用,我将提供两个示例:一个是使用核密度估计(KDE)的示例,另一个是使用局部加权散点图平滑(LOESS)的示例。这两个例子都将使用Python中的标准数据科学库。

示例 1: 核密度估计(KDE)

核密度估计(KDE)是一种用于估计概率密度函数的非参数方式。以下示例使用scipymatplotlib库来演示如何对一组数据应用KDE并进行可视化。

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kdedata = np.random.normal(0, 1, size=1000)# 使用高斯核进行核密度估计
kde = gaussian_kde(data)
kde.set_bandwidth(bw_method=kde.factor / 3.)# 创建值域,用于评估KDE
x = np.linspace(-5, 5, 1000)# 绘制KDE结果
plt.figure(figsize=(8, 4))
plt.plot(x, kde(x), label='KDE')
plt.hist(data, bins=30, density=True, alpha=0.5, label='Histogram')
plt.title("Kernel Density Estimation")
plt.legend()
plt.show()

这段代码首先生成一组服从标准正态分布的随机数据。然后,使用scipy.stats.gaussian_kde函数对这些数据进行核密度估计,并将结果与数据的直方图进行比较。

示例 2: 局部加权散点图平滑(LOESS)

局部加权散点图平滑(LOESS)是另一种非参数回归方法,适用于数据点较少且关系未知的情况。以下示例使用statsmodels库演示LOESS的应用。

import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as smnp.random.seed(42)
x = np.linspace(0, 10, 100)
y = np.sin(x) + np.random.normal(0, 0.5, 100)# 应用LOESS平滑
lowess = sm.nonparametric.lowess(y, x, frac=0.1)# 绘制原始数据和LOESS平滑结果
plt.figure(figsize=(8, 4))
plt.scatter(x, y, label='Data', alpha=0.5)
plt.plot(lowess[:, 0], lowess[:, 1], label='LOESS', color='red')
plt.title("LOESS Smoothing")
plt.legend()
plt.show()

这段代码生成了一组随机数据,数据点围绕正弦曲线分布,并添加了一些噪声。然后,使用statsmodels库中的nonparametric.lowess函数对数据进行LOESS平滑。最后,绘制了原始数据点和LOESS平滑结果的对比图。

这两个示例展示了非参数回归在数据分析中的应用,特别是在数据结构未知或关系复杂时的实用性和灵活性。

结论

非参数回归提供了一种强大且灵活的方法来探索和建模数据之间的复杂关系。尽管存在一些挑战,如数据需求大和计算成本高,但它们在许多实际应用中都证明了自己的价值。随着计算能力的提高和新算法的开发,非参数回归在数据科学领域的应用将会继续扩大。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2808307.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

小米标准模组+MCU 快速上手开发(一)——之固件下载

小米标准模组+MCU 开发笔记之固件下载 背景技术名词简介● 小米IoT开发者平台● 小米IoT 模组● ESP系列简介问题描述 + 解决方式问题1:固件下载是否有示例,如何下载到硬件板卡中?问题2:固件下载的官方程序是什么?在哪里?该如何使用?问题3:固件下载时,Flash和Ram 有什…

VCRUNTIME140_1.dll丢失是怎么回事,如何解决

当计算机系统中找不到vcruntime140_1.dll文件时,运行依赖于该文件的软件通常会显示错误消息,这类错误消息可能会包含以下几种形式: 明确提示缺失文件:错误信息可能直接指出“无法找到vcruntime140_1.dll”或“vcruntime140_1.dll…

怎么自学python,大概要多久?python多久上手?

无限时长~~~~技术不断在更新,你的自学不也需要一直进行吗? 但如果是问:自学多长时间可以入门?或者可以找到工作?那我可以告诉你答案。 从零基础开始自学Python,依照每个人理解能力的不同,大致…

no main manifest attribute, in app.jar

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

软件工程复习笔记

一、软件工程概述 软件 = 程序 + 数据 + 相关文档 软件危机(Software Crisis) 指由于落后的软件生产方式无法满足迅速增长的计算机软件需求,从而导致软件开发与维护过程中出现一系列严重问题的现象。 软件工程三要素 方法、工具、过程 软件工程目标 在给定成本、进度的…

目标检测新SOTA:YOLOv9 问世,新架构让传统卷积重焕生机

在目标检测领域,YOLOv9 实现了一代更比一代强,利用新架构和方法让传统卷积在参数利用率方面胜过了深度卷积。 继 2023 年 1 月 YOLOv8 正式发布一年多以后,YOLOv9 终于来了! 我们知道,YOLO 是一种基于图像全局信息进行…

[HTML]Web前端开发技术30(HTML5、CSS3、JavaScript )JavaScript基础——喵喵画网页

希望你开心,希望你健康,希望你幸福,希望你点赞! 最后的最后,关注喵,关注喵,关注喵,佬佬会看到更多有趣的博客哦!!! 喵喵喵,你对我真的很重要! 目录 前言 网页标题:手机批发业务-商品备选区<

解析OOM的三大场景,原因及实战解决方案

目录 一、什么是OOM 二、堆内存溢出&#xff08;Heap OOM&#xff09; 三、方法区内存溢出&#xff08;Metaspace OOM&#xff09; 四、栈内存溢出&#xff08;Stack OOM&#xff09; 一、什么是OOM OOM 是 Out Of Memory 的缩写&#xff0c;意思是内存耗尽。在计算机领域…

【Spring MVC】处理器映射器:AbstractHandlerMethodMapping源码分析

目录 一、继承体系 二、HandlerMapping 三、AbstractHandlerMapping 四、AbstractHandlerMethodMapping 4.1 成员属性 4.1.1 MappingRegistry内部类 4.2 AbstractHandlerMethodMapping的初始化 4.3 getHandlerInternal()方法&#xff1a;根据当前的请求url&#xff0c;…

Java基于物联网技术的智慧工地云管理平台源码 依托丰富的设备接口标准库,快速接入工地现场各类型设备

目录 风险感知全面化 项目进度清晰化 环境监测实时化 人员管理高效化 工地数字化 数据网络化 管理智慧化 智慧工地平台整体架构 1个可扩展监管平台 2个应用端 3方数据融合 N个智能设备 智慧工地的远程监管&#xff0c;是工地负责人掌握施工现场情况的必要手段&…

12 - grace数据处理 - 泄露误差改正 - 区域核函数法

grace数据处理 - 泄露误差改正 - 区域核函数法 *0* 引言*1* 实现过程*2* 实现的主要方法0 引言 高斯滤波又称为高斯平滑,其本质是一种加权平均方法,球面某点的信号可由其它点加权平均得到,可实现抑制高阶噪声的目的。既然是一种平滑方法,对研究区边缘数据平滑时容易产生数据…

✅技术社区项目—JWT身份验证

通用的JWT鉴权方案 JWT鉴权流程 基本流程分三步: ● 用户登录成功之后&#xff0c;后端将生成的jwt返回给前端&#xff0c;然后前端将其保存在本地缓存; ● 之后前端与后端的交互时&#xff0c;都将iwt放在请求头中&#xff0c;比如可以将其放在Http的身份认证的请求头 Author…

【编译原理】第六章课后习题(王原生第三版)

前言 课本&#xff1a; 编译原理&#xff08;第三版&#xff09;[王生原、董渊…等编著]习题&#xff1a; 主要习题内容是第一章到第八章&#xff0c;具体内容如下表 章节内容链接第一章课后部分选择题https://blog.csdn.net/Zchengjisihan/article/details/136243955第二章课…

C++ //练习 8.4 编写函数,以读模式打开一个文件,将其内容读入到一个string的vector中,将每一行作为一个独立的元素存于vector中。

C Primer&#xff08;第5版&#xff09; 练习 8.4 练习 8.4 编写函数&#xff0c;以读模式打开一个文件&#xff0c;将其内容读入到一个string的vector中&#xff0c;将每一行作为一个独立的元素存于vector中。 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09…

数据结构知识点总结-线性表(1)-线性表的定义、基本操作、顺序表表示

线性表 定义 线性表是具有相同数据类型的N&#xff08;N>0&#xff09;个元素的有限序列&#xff0c;其中N为表长&#xff0c;当N0时线性表是一张空表。 线性表的逻辑特征&#xff1a;每个非空的线性表都有一个表头元素和表尾元素&#xff0c;中间的每个元素有且仅有一个直…

第九章 shell编程之awk

目录 1.1. 概念 1.2. 工作流程 1.2.1. 如图&#xff1a; 1.2.2. 流程&#xff1a; 1.3. awk命令的基本语法 1.3.1. 格式&#xff1a; 1.3.2. BEGIN模式与END模式 1.3.3. awk的输出 1.4. awk程序执行方式 1.4.1. 通过命令行执行awk程序 1.4.2. awk命令调用脚本执行 …

用Python Matplotlib画图导致paper中含有Type-3字体,如何解决?

用Python Matplotlib画图导致paper中含有Type-3字体&#xff0c;如何解决&#xff1f; 在提交ACM或者IEEE论文之前&#xff0c;都会有格式的检查&#xff0c;格式的其中一个要求是paper中不能含有Type-3的字体。因为Type-1和True Type字体都是矢量字体&#xff0c;而Type-3并不…

STL常用容器(vector容器)---C++

STL常用容器目录 2.vector容器2.1 vector基本概念2.2 vector构造函数2.3 vector赋值操作2.4 vector容量和大小2.5 vector插入和删除2.6 vector数据存取2.7 vector互换容器2.7.1 vector互换容器收缩内存空间 2.8 vector预留空间 2.vector容器 2.1 vector基本概念 功能&#xf…

文献阅读:Large Language Models are Null-Shot Learners

文献阅读&#xff1a;Large Language Models are Null-Shot Learners 1. 文章简介2. 方法介绍3. 实验考察 & 结论 1. 基础实验 1. 实验设计2. 实验结果 2. 消融实验 1. 小模型上的有效性2. ∅CoT Prompting3. 位置影响4. 组成内容 4. 总结 & 思考 文献链接&#xff1…

计算机网络:思科实验【3-集线器与交换机的区别、交换机的自学习算法】

&#x1f308;个人主页&#xff1a;godspeed_lucip &#x1f525; 系列专栏&#xff1a;Cisco Packet Tracer实验 本文对应的实验报告源文件请关注微信公众号程序员刘同学&#xff0c;回复思科获取下载链接。 实验目的实验环境实验内容集线器与交换机的区别交换机的自学习算法…