计算机网络:思科实验【3-集线器与交换机的区别、交换机的自学习算法】

在这里插入图片描述

在这里插入图片描述

🌈个人主页:godspeed_lucip
🔥 系列专栏:Cisco Packet Tracer实验

本文对应的实验报告源文件请关注微信公众号程序员刘同学,回复思科获取下载链接。


  • 实验目的
  • 实验环境
  • 实验内容
    • 集线器与交换机的区别
    • 交换机的自学习算法
  • 实验体会
  • 总结


实验目的

1 验证集线器与交换机的区别

2 验证交换机的自学习算法

3 进一步理解交换机的工作原理

实验环境

Cisco Packet Tracer模拟器

实验内容

集线器与交换机的区别

1)第一步:构建网络拓扑:在逻辑工作空间上,分别拖动两台集线器与两台交换机,集线器、交换机各自连接三台主机,如图所示。如果交换机连接线的两个指示灯不是绿色,可以鼠标在实时模式与仿真模式之间多次切换,直至两个指示灯都呈现为绿色。

图片包含 街道, 灯光, 游戏机, 城市  描述已自动生成

2)第二步:设置设备IP地址:鼠标左键单击设置的设备,选择桌面,选择IP设置,分别将两台集线器、交换机对应的六台主机IP地址设置为”192.168.0.1”、”192.168.0.2”、”192.168.0.3”、”192.168.0.4”、”192.168.0.5”、”192.168.0.6”。如图**2*所示

图形用户界面, 应用程序, 电子邮件  描述已自动生成

(3)第三步:在实时模式下,使主机互相发送分组,以便使各主机的ARP缓存表中存储同一网络中其他主机的信息。如图所示。图示  描述已自动生成

之后删除刚才的发送分组过程,如图所示

img

(4)第四步:在事件列表过滤器中,只保留ICMP协议,如图所示

图片包含 应用程序  描述已自动生成

(5)第五步:在集线器网络中发送分组。鼠标切换到仿真模式,使主机1向主机2发送分组,观察到分组首先被发送到集线器中,接着集线器将分组广播到所有主机中,如图所示。图片包含 游戏机, 仪表  描述已自动生成

主机3发现分组的目的MAC地址不是自己,丢弃分组,主机2发现分组的目的MAC地址是自己,于是接收分组,并向主机1发送确认分组,如图所示。

图示  中度可信度描述已自动生成

(6)第六步:在仿真面板中点击“捕获**/前进”按钮。确认分组首先被发送到集线器中,接着集线器会将其广播到所有主机中,如图所示。主机3发现确认分组的目的MAC地址不是自己,于是丢弃该分组,主机1发现确认分组的目的MAC**地址是主机,于是接收该分组。

图表  描述已自动生成

(7)第七步:在交换机网络中发送分组。使交换机网络中的主机1向主机2发送一个ICMP询问分组,观察到该分组首先被发送到交换机中,交换机再把分组明确的转发到主机2中,如图9所示。

图示  描述已自动生成

主机2发现该分组的目的MAC地址是自己,于是接收该分组,并向主机1发送确认分组,如图10所示。

图示  描述已自动生成

(8)第八步:在仿真面板中点击“捕获**/前进”按钮。确认分组首先被发送到交换机中,接着交换机将其准确的发送给主机1,如图所示。主机1发现该分组是一个确认分组,且分组的目的MAC**地址是自己,于是接收该分组并不进行回复。我们可以看出,集线器对分组有过滤功能,会将其精确的发送给目的主机,但是集线器会将其广播出去。

图示  描述已自动生成

(9)第九步:将分别将两个集线器网络、两个交换机网络互联起来,如图所示。构成了一个更大的集线器网络、交换机网络

电脑游戏的截图  低可信度描述已自动生成

(10)第十步:在更大的集线器网络中发送分组。鼠标使主机1向主机2发送ICMP询问分组,观察到该分组首先被发送到第一个集线器,接着集线器1将其广播出去,如图所示。

交通信号灯  中度可信度描述已自动生成

主机3收到该分组后丢弃,主机2收到该分组后接收,并准备向主机1发送一个确认分组。在仿真面板中点击“捕获**/前进”按钮,交换机2将ICMP询问请求广播出去,主机4、5、6发现该分组的目的MAC**地址不是自己,于是丢弃该分组,此时主机1发送的确认分组首先到达集线器1,如图所示。

交通信号灯  中度可信度描述已自动生成

(11)第十一步:集线器1将确认分组广播,主机3丢弃该分组,主机1发现该分组为确认分组且目的MAC地址是自己,于是接收分组且不再回答,如图所示。信号灯柱  中度可信度描述已自动生成

接着,集线器2会将该分组广播出去,如图所示。主机4、5、6发现分组的目的MAC地址不是自己,于是丢弃该分组。

图表, 箱线图  描述已自动生成

(12)第十二步:是交换机网络中主机1向主机2发送ICMP请求分组,该请求首选发送到交换机中,接着交换机将其精准的发往主机2,如图所示。

图示  描述已自动生成

主机2发现该分组的目的MAC地址是自己,于是接收该分组并向主机1发送确认分组,确认分组首先被发送到交换机中,接着交换机精确的将其发往主机1,如图所示。主机1接收该分组并不再回应。

img

(13)第十三步:集线器网络同时发送多个分组。分别使主机1向主机2发送ICMP询问分组、使主机3向主机4方ICMP询问分组。这些分组首先被发送到集线器1、2。接着,集线器1、2将分组广播,主机3、6发现分组的目MAC地址不是自己,于是丢弃分组,主机2、4接收分组,集线器1与集线器2互相广播过程中信号发生碰撞而出错,如图所示。

img

接着,集线器1、2将出错信息广播,此时主机2、4发送的确认分组与错误信息碰撞,此时所有的主机、集线器都受到错误信息,如图所示。

交通信号灯  描述已自动生成

(14)第十四步:交换机网络同时发送多个分组。分别使交换机网络中的主机1、主机4向主机2、主机4发送ICMP询问分组,分组首先被发送到交换机1、2。如图所示。

交通信号灯  低可信度描述已自动生成

接着被交换机准确发送到主机2、主机4。主机2、4发现这是一个ICMP询问分组,其目的MAC地址是自己,于是接收分组后并向主机1、3发送确认分组。确认分组首先被发送到交换机上,交换机精准的将其发送给主机1、3,如图所示。主机1、3接收并不再回复。

形状  中度可信度描述已自动生成

(15)第十五步:在交换机网络上广播帧。鼠标选择“复杂PDU”,如图23所示。所有的主机都会收到广播帧。

img

在目的IP地址填广播地址(255.255.255.255),如图24所示。

图形用户界面  描述已自动生成

该广播帧首先会被发送到交换机,接着交换机将它们广播,如图25所示。

图片包含 形状  描述已自动生成

(16)第十六步:构建网络拓扑,将集线器用一个交换机连接,如图所示。接着,使主机互相发送分组,使交换机的ARP表存储各主机信息。

交通信号灯  中度可信度描述已自动生成

(17)第十七步:使主机1向主机2发送ICMP询问分组,分组首先被发送到集线器,接着集线器对其进行广播,交换机收到分组后发现目的MAC地址不在右边的集线器网络,故不会发送,起到隔离碰撞域的作用。如图所示。交通信号灯  中度可信度描述已自动生成

主机2收到分组并向主机1发送确认分组,确认分组首先被发送到集线器中,接着集线器进行广播,与第一步类似,如图所示。主机1收到分组并不再回复。

img

交换机的自学习算法

1)第一步:构建网络拓扑。在逻辑工作空间上,拖动三个终端设备和一个集线器,用连接线把设备连接起来。如图所示。

图示  中度可信度描述已自动生成

2)第二步:设置IP地址。鼠标左键单击要设置的设备,选择桌面,选择IP设置,如图所示

图形用户界面, 应用程序  描述已自动生成

(3)第三步:设置IP地址注释。为了方便后续实验的观察,为每一台主机都标住上它们的IP地址。鼠标选择”注释”,如图所示。接着在每台主机的上方都写上它们的注释,如图所示。

img

图示  描述已自动生成

(4)第四步:设置主机的MAC地址注释。鼠标切换到选择模式,左键选中主机,选择配置,选择”FastEthernet”,就可以看到主机的MAC地址,如图所示。使用注释将MAC地址标记在主机旁边,如图所示。

图形用户界面, 应用程序  描述已自动生成

图示  描述已自动生成

(5)第五步:在事件列表过滤器中,只保留ARP协议和ICMP协议,如图所示

图片包含 背景图案  描述已自动生成

(6)第六步:为了方便实验观察,还需要显示各主机、交换机的端口号。在菜单中选择选项,选择参数选择,勾选”在逻辑工作空间中显示端口标签”,如图所示。

QR 代码  低可信度描述已自动生成

图形用户界面, 应用程序  描述已自动生成

(7)第七步:查看交换机的ARP缓存表,如图所示。此时交换机的ARP缓存表是空的。

图片包含 图形用户界面  描述已自动生成

(8)第八步:使主机1向主机2发送简单PDU,此时主机1不知道主机2的IP地址,需要事先发送一个ARP请求帧,如图所示。

图示  描述已自动生成

(9)第九步:ARP请求帧首先被发送到交换机中,接着交换机会查询它主机的ARP缓存表,查看目的IP是否在其中。显示此时目的主机IP不在交换机的ARP缓存中,因此交换机会进行广播发送,如图所示。

图形用户界面, 文本, 应用程序  描述已自动生成

此时该请求帧为一个广播帧,如图所示。

图示  描述已自动生成

(10)第十步:主机2、3的网卡接收该广播帧,交付给上层的ARP进程解析,主机3的ARP进程发现目的地址不是自己,于是丢弃PDU,而主机2的ARP进程发下目的地址是自己,于是接收该帧。ARP进程并将自己的IP地址、MAC地址封装在ARP单波响应中向主机1发送。

(11)第十一步:响应帧首先到达交换机,如图所示。

图示  描述已自动生成

交换机读取到主机2的IP地址、MAC地址并存储在自己的ARP缓存表中,此时交换机ARP缓存表中包含主机1、2的IP地址、MAC地址,如图所示。

图形用户界面, 应用程序  描述已自动生成

(12)第十二步:交换机收到响应帧,在自己的缓存表中寻找目的MAC地址,发现有,于是按照对应的端口号将响应帧从端口0发送给主机1,如图所示。

图示  描述已自动生成

(13)第十三步:主机1得到主机2的IP地址、MAC地址,于是主机1将ICMP询问分组发送给主机2。分组首先被发送到交换机中,交换机查找目的MAC地址,发现表中有,于是从对应的端口3中发送给主机2,如图所示。主机2收到分组,并发送响应分组给主机1。该分组发送步骤与上类似。

图示  描述已自动生成

(14)第十四步:按照之前的步骤构建如图所示的网络拓扑,

图示  描述已自动生成

使主机相互发送分组,以便使交换机存储各主机的有关信息。此时交换机内部应该存储有主机4、5的信息,如图所示。

文本  中度可信度描述已自动生成

(15)第十五步:使主机4向主机5发送一个PDUPDU首先被发送到集线器中,接着被广播,但是交换机会丢弃该包,如图所示。原因在于交换机查找到该PDU的目的地址对应的端口号为4,而该PDU又恰好是从端口4发送过来的,于是交换机知道不必继续转发该PDU

图示  描述已自动生成

(16)第十六步:删除刚才的发送事件,如图所示。

图形用户界面, 应用程序, Word  描述已自动生成

点击交换机,选择”命令行界面”,按回车,如图所示。

图形用户界面, 文本, 应用程序, 电子邮件  描述已自动生成

输入命令”enable”进入特权模式。输命令”show mac-a”查看所有的MAC地址,结果如图所示。

表格  描述已自动生成

输入命令”clear mac-a”以清楚所有的MAC地址,并再次输入”show mac-a”,结果如图所示。

图形用户界面, 应用程序  描述已自动生成

(17)第十七步:此时交换机内部所有的MAC地址信息已经清楚。再次使主机4向主机5发送PDUPDU首先会到达集线器,接着集线器会将其广播出去,如图所示。

图示  描述已自动生成

交换机随后也会将其广播,如图所示。原因在于交换机不知道目的MAC的地址,只能广播,此现象又称为泛洪。

图示  描述已自动生成

实验体会

1 交换机能够过来信息,不必再像集线器一样将信息全部广播,能节省大量的网络资源。

2 交换机的自学习算法使得在部署交换机时十分方便,不需要对参数进行大量的设置。

总结

无边的丝线,网罗天地间, 信息律动,编织着未来的领域。

电子雄心,携手共舞, 万象交融,数码之花灿烂。

时空交错,虚实相连, 网络之舞,激荡心弦。

无言的交流,电波悠扬, 互联的奇迹,在指尖绽放。

计算的魔力,解锁智慧之门, 网络如诗,奏响科技的赞歌。

渴望挑战计算机网络的学习路径和掌握进阶技术?不妨点击下方链接,一同探讨更多计算机网络的奇迹吧。我们推出了引领趋势的💻计网专栏:【Cisco Packet Tracer实验】 ,旨在深度探索计算机网络的实际应用和创新。🌐🔍

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2808275.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Cubase学习:Cubase 12常用快捷键

按键盘上的上下箭头就可以让选中的音符向上或向下移动 数字0键: 停止 Ctrl+数字 0 键: 新建视图层 Alt+数字0 键: 重新设置视图层 小数点键: 播放指针回零点 数字1 键: 左定位指针 数字 2 键: 右定位指针 数字3 键--数字9键: 分别控制 3--9 的7个定位标志 Alt+数字1 键--数字9键…

自定义神经网络四之编写自定义神经网络

文章目录 前言神经网络组件代码整体的项目结构Tensor张量Layers层NeuralNet神经网络Loss损失函数Optim优化器data数据处理train训练 神经网络解决实际问题实际问题训练和推理代码 总结 前言 自定义神经网络一之Tensor和神经网络 自定义神经网络二之模型训练推理 自定义神经网络…

【Android】View 与 ViewGroup

View 是 Android 所有控件的基类,我们平常所用的 TextView 和 ImageView 都是继承自 View 的,源码如下: public class TextView extends View implements ViewTreeObserver.OnPreDrawListener {... }public class ImageView extends View {.…

【Java程序设计】【C00297】基于Springboot的养老院管理系统(有论文)

基于Springboot的养老院管理系统(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的养老院管理系统设计与实现,本系统有管理员以及用户二种角色; 系统整体功能有:老人管理、字典表…

第八章 堆

第八章 堆 文章目录 第八章 堆0. 前情概述1. 堆(Heap)的核心概述1.1 堆的内存细分 2. 设置堆内存大小与OOM2.1 对空间大小的设置2.2 OutOfMemory举例 3. 年轻代与老年代4. 图解对象分配过程5. Minor GC、Major GC与Full GC5.1 最简单的分代式GC策略的触发条件 6. 堆空间分代思想…

【黑马程序员】3、TypeScript常用类型_黑马程序员前端TypeScript教程,TypeScript零基础入门到实战全套教程

课程地址:【黑马程序员前端TypeScript教程,TypeScript零基础入门到实战全套教程】 https://www.bilibili.com/video/BV14Z4y1u7pi/?share_sourcecopy_web&vd_sourceb1cb921b73fe3808550eaf2224d1c155 目录 3、TypeScript常用类型 3.1 类型注解 …

SAM轻量化的终点竟然是RepViT + SAM

本文首发:AIWalker,欢迎关注~~ 殊途同归!SAM轻量化的终点竟然是RepViT SAM,移动端速度可达38.7fps。 对于 2023 年的计算机视觉领域来说,「分割一切」(Segment Anything Model)是备受关注的一项…

安装 Ubuntu 22.04.3 和 docker

文章目录 一、安装 Ubuntu 22.04.31. 简介2. 下载地址3. 系统安装4. 系统配置 二、安装 Docker1. 安装 docker2. 安装 docker compose3. 配置 docker 一、安装 Ubuntu 22.04.3 1. 简介 Ubuntu 22.04.3 是Linux操作系统的一个版本。LTS 版本支持周期到2032年。 系统要求双核 C…

了解 JavaScript 中的重放攻击和复现攻击

在网络安全领域,重放攻击(Replay Attack)和复现攻击(Playback Attack)是一些可能导致安全漏洞的攻击形式。这两种攻击类型涉及在通信过程中再次发送已经捕获的数据,以达到欺骗系统的目的。本文将介绍 JavaS…

高并发下如何保证数据的一致性

拿转账来说,在高并发下场景下,对账户余额操作的一致性,是非常重要的。如果代码写的时候没考虑并发一致性,就会导致公司亏损。所以本篇主要聊一下,如何在并发场景下,保证账户余额的一致性。 扣款流程 伪代码…

常用实验室器皿耐硝酸盐酸进口PFA材质容量瓶螺纹盖密封效果好

PFA容量瓶规格参考:10ml、25ml、50ml、100ml、250ml、500ml、1000ml。 别名可溶性聚四氟乙烯容量瓶、特氟龙容量瓶。常用于ICP-MS、ICP-OES等痕量分析以及同位素分析等实验,也可在地质、电子化学品、半导体分析测试、疾控中心、制药厂、环境检测中心等机…

【Linux基础】vim、常用指令、组管理和组权限

Linux基础 1、目录结构2、vi和vim3、常用指令运行级别找回密码帮助指令时间日期指令搜索查找文件目录操作磁盘管理指令压缩和解压缩 4、组管理和组权限用户操作指令权限 1、目录结构 Linux的文件系统是采用级层式的树状目录结构,在此结构中的最上层是根目录“/”&a…

Repeater:创建大量类似项

Repeater 类型用于创建大量类似项。与其它视图类型一样,Repeater有一个model和一个delegate。 首次创建Repeater时,会创建其所有delegate项。若存在大量delegate项,并且并非所有项都必须同时可见,则可能会降低效率。 有2种方式可…

C语言第三十弹---自定义类型:结构体(上)

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】 结构体 1、结构体类型的声明 1.1、结构体回顾 1.1.1、结构的声明 1.1.2、结构体变量的创建和初始化 1.2、结构的特殊声明 1.3、结构的自引用 2、结构体内存…

未来已来:数字孪生与智慧园区的深度融合

目录 一、数字孪生技术的概述 二、智慧园区的概念和发展 三、数字孪生与智慧园区的深度融合 四、数字孪生与智慧园区的未来展望 五、结论 随着科技的飞速发展,我们正处在一个日新月异的时代。数字孪生技术作为新兴的前沿科技,已经引起了全球范围内的…

【人脸朝向识别与分类预测】基于PNN神经网络

课题名称:基于PNN神经网络的人脸朝向识别分类 版本日期:2024-02-20 运行方式:直接运行PNN0503.m文件 代码获取方式:私信博主或 QQ:491052175 模型描述: 采集到一组人脸朝向不同角度时的图像,图像来自不…

奇异递归模板模式应用6-类模板enable_shared_from_this

异步编程中存在一种场景,需要在类中将该类的对象注册到某个回调类或函数中,不能简单地将this传递给回调类中,很可能因为回调时该对象不存在而导致野指针访问(也有可能在析构函数解注册时被回调,造成对象不完整&#xf…

[VNCTF2024]-Web:CheckIn解析

查看网页 一款很经典的游戏,而且是用js写的 在调试器里面我们可以看见,如果游戏通关的话,它会进行一系列操作,包括使用console.log(_0x3d9d[0]);输出_0x3d9d[0]到控制台,那我们就直接在点击在控制台求出它的值

初始Nginx(基本概念)

目录 一、Nginx的概念 二、Nginx常用功能 1、HTTP(正向)代理,反向代理 1.1正向代理 1.2 反向代理 2、负载均衡 2.1 轮询法(默认方法) 2.2 weight权重模式(加权轮询) 2.3 ip_hash 3、web缓存 三、基础特性 四…

论文阅读:Ground-Fusion: A Low-cost Ground SLAM System Robust to Corner Cases

前言 最近看到一篇ICRA2024上的新文章,是关于多传感器融合SLAM的,好像使用了最近几年文章中较火的轮式里程计。感觉这篇文章成果不错,代码和数据集都是开源的,今天仔细读并且翻译一下,理解创新点、感悟研究方向、指导…