矩阵的导数运算(理解分子布局、分母布局)

矩阵的导数运算(理解分子布局、分母布局)

1、分子布局和分母布局

请思考这样一个问题,一个维度为m的向量y对一个标量x的求导,那么结果也是一个m维的向量,那么这个结果向量是行向量,还是列向量呢?

答案是:行向量或者列向量皆可! 求导的本质只是把标量求导的结果排列起来,至于是按行排列还是按列排列都是可以的。但是这样也有问题,在我们机器学习算法优化过程中,如果行向量或者列向量随便写,那么结果就不唯一,乱套了。

为了解决矩阵向量求导的结果不唯一,我们引入求导布局。最基本的求导布局有两个:分子布局(numerator layout)和分母布局(denominator layout )。

  • 对于分子布局来说,我们求导结果的维度以分子为主

  • 对于分母布局来说,我们求导结果的维度以分母为主

2、标量方程对向量的导数

标量方程中的未知量是标量,而不是矢量或矩阵。

通常情况下,标量方程可以是各种类型的代数方程,包括线性方程、二次方程、多项式方程等。这些方程中的未知量都是标量,通常表示为一个变量,例如 x、y、z 等。
已知标量方程 f ( y ) = f ( y 1 , y 2 , . . . , y m ) ,我们求解标量方程 f ( y ) 对向量 y → = ( y 1 y 2 ⋮ y m ) 的导数 已知标量方程f(y) = f(y_1,y_2,...,y_m),我们求解标量方程f(y) 对向量\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right)的导数 \\ 已知标量方程f(y)=f(y1,y2,...,ym),我们求解标量方程f(y)对向量y = y1y2ym 的导数
在这里插入图片描述

分母为向量y,维度为m×1,求导结果的行数和分母相同,都为m,因此为分母布局。

分子为标量,维度为1×1,求导结果的行数和分子相同,都为1,因此为分子布局。

具体案例如下:
已知标量方程 f ( y ) = y 1 2 + y 2 2 ,我们求解标量方程 f ( y ) 对向量 y → = ( y 1 y 2 ) 的导数 按照分母布局 ( 行数和分母相同 ) ,则 ∂ f ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 ∂ f ( y → ) ∂ y 2 ) = ( 2 y 1 2 y 2 ) 按照分子布局 ( 行数和分子相同 ) ,则 ∂ f ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 , ∂ f ( y → ) ∂ y 2 ) = ( 2 y 1 , 2 y 2 ) 已知标量方程f(y) = y_1^2 + y_2^2,我们求解标量方程f(y) 对向量\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \end{matrix} \right)的导数 \\ 按照分母布局(行数和分母相同),则\frac{\partial{f(\overrightarrow{y})}}{\partial{\overrightarrow{y}}}=\left( \begin{matrix} \frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}} \\ \end{matrix} \right)=\left( \begin{matrix} 2y_1 \\ 2y_2 \\ \end{matrix} \right)\\ 按照分子布局(行数和分子相同),则\frac{\partial{f(\overrightarrow{y})}}{\partial{\overrightarrow{y}}}=(\frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}},\frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}})=(2y_1, 2y_2) 已知标量方程f(y)=y12+y22,我们求解标量方程f(y)对向量y =(y1y2)的导数按照分母布局(行数和分母相同),则y f(y )=(y1f(y )y2f(y ))=(2y12y2)按照分子布局(行数和分子相同),则y f(y )=(y1f(y ),y2f(y ))=(2y1,2y2)
注意:分子布局结果和分母布局结果互为转置。

3、向量方程对向量的导数

3.1 公式

已知 y → = ( y 1 y 2 ⋮ y m ) ,求向量方程 f → ( y → ) = ( f 1 ( y → ) f 2 ( y → ) ⋮ f n ( y → ) ) 对 y → 的导数 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right),求向量方程\overrightarrow{f}(\overrightarrow{y})=\left( \begin{matrix} f_1(\overrightarrow{y}) \\ f_2(\overrightarrow{y}) \\ \vdots \\ f_n(\overrightarrow{y}) \\ \end{matrix} \right)对\overrightarrow{y}的导数\\ 已知y = y1y2ym ,求向量方程f (y )= f1(y )f2(y )fn(y ) y 的导数

利用分母布局:
∂ f → ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 ∂ f ( y → ) ∂ y 2 ⋮ ∂ f ( y → ) ∂ y m ) = ( ∂ f 1 ( y → ) ∂ y 1 ∂ f 2 ( y → ) ∂ y 1 ⋯ ∂ f n ( y → ) ∂ y 1 ∂ f 1 ( y → ) ∂ y 2 ∂ f 2 ( y → ) ∂ y 2 ⋯ ∂ f n ( y → ) ∂ y 2 ⋮ ⋮ ⋱ ⋮ ∂ f 1 ( y → ) ∂ y m ∂ f 2 ( y → ) ∂ y m ⋯ ∂ f n ( y → ) ∂ y m ) \frac{\partial{\overrightarrow{f}(\overrightarrow{y})}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}} \\ \vdots \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_m}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_1}} & \cdots &\frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_1}}\\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_2}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_2}} &\cdots& \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_m}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_m}} &\cdots& \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_m}} \\ \end{matrix} \right)\\ y f (y )= y1f(y )y2f(y )ymf(y ) = y1f1(y )y2f1(y )ymf1(y )y1f2(y )y2f2(y )ymf2(y )y1fn(y )y2fn(y )ymfn(y )
利用分子布局:

∂ f → ( y → ) ∂ y → = ( ∂ f 1 ( y → ) ∂ y → ∂ f 2 ( y → ) ∂ y → ⋮ ∂ f n ( y → ) ∂ y → ) = ( ∂ f 1 ( y → ) ∂ y 1 ∂ f 1 ( y → ) ∂ y 2 ⋯ ∂ f 1 ( y → ) ∂ y m ∂ f 2 ( y → ) ∂ y 1 ∂ f 2 ( y → ) ∂ y 2 ⋯ ∂ f 2 ( y → ) ∂ y m ⋮ ⋮ ⋱ ⋮ ∂ f n ( y → ) ∂ y 1 ∂ f n ( y → ) ∂ y 2 ⋯ ∂ f n ( y → ) ∂ y m ) \frac{\partial{\overrightarrow{f}(\overrightarrow{y})}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{\overrightarrow{y}}} \\ \frac{\partial{f_2(\overrightarrow{y})}}{\partial{\overrightarrow{y}}} \\ \vdots \\ \frac{\partial{f_n(\overrightarrow{y})}}{\partial{\overrightarrow{y}}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_2}} & \cdots &\frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_m}}\\ \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_2}} &\cdots& \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_m}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_2}} &\cdots& \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_m}} \\ \end{matrix} \right) y f (y )= y f1(y )y f2(y )y fn(y ) = y1f1(y )y1f2(y )y1fn(y )y2f1(y )y2f2(y )y2fn(y )ymf1(y )ymf2(y )ymfn(y )

3.2 具体示例

已知 y → = ( y 1 y 2 y 3 ) ,求向量方程 f → ( y → ) = ( f 1 ( y → ) f 2 ( y → ) ) = ( y 1 2 + y 2 2 + y 3 y 3 2 + 2 y 1 ) 对 y → 的导数 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ y_{3} \\ \end{matrix} \right),求向量方程\overrightarrow{f}(\overrightarrow{y})=\left( \begin{matrix} f_1(\overrightarrow{y}) \\ f_2(\overrightarrow{y}) \\ \end{matrix} \right)=\left( \begin{matrix} y_1^2+y_2^2+y_3 \\ y_3^2+2y_1 \\ \end{matrix} \right) 对\overrightarrow{y}的导数\\ 已知y = y1y2y3 ,求向量方程f (y )=(f1(y )f2(y ))=(y12+y22+y3y32+2y1)y 的导数

我们按照分母布局来求(得到结果为m×n的矩阵,即3×2):
∂ f → ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 ∂ f ( y → ) ∂ y 2 ∂ f ( y → ) ∂ y 3 ) = ( ∂ f 1 ( y → ) ∂ y 1 ∂ f 2 ( y → ) ∂ y 1 ∂ f 1 ( y → ) ∂ y 2 ∂ f 2 ( y → ) ∂ y 2 ∂ f 1 ( y → ) ∂ y 3 ∂ f 2 ( y → ) ∂ y 3 ) = ( 2 y 1 2 2 y 2 0 1 2 y 3 ) \frac{\partial{\overrightarrow{f}(\overrightarrow{y})}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_3}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_1}} & \\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_2}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_2}} & \\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_3}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_3}} & \\ \end{matrix} \right)=\left( \begin{matrix} 2y_1 & 2 & \\ 2y_2 & 0 & \\ 1 & 2y_3 & \\ \end{matrix} \right)\\ y f (y )= y1f(y )y2f(y )y3f(y ) = y1f1(y )y2f1(y )y3f1(y )y1f2(y )y2f2(y )y3f2(y ) = 2y12y21202y3

3.3 常用特例

常用特例1:
已知 y → = ( y 1 y 2 ⋮ y m ) ,方阵 A = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) , 证明 ∂ A y → ∂ y → = A T , ∂ y T → A ∂ y → = A ( 分母布局 ) 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right),方阵A=\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right),证明\frac{\partial{A\overrightarrow{y}}}{\partial\overrightarrow{y}}=A^T, \frac{\partial{\overrightarrow{y^T}}A}{\partial\overrightarrow{y}}=A(分母布局) 已知y = y1y2ym ,方阵A= a11a21am1a12a22am2a1ma2mamm ,证明y Ay =ATy yT A=A(分母布局)
我们使用分母布局来求
A y → = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) . ( y 1 y 2 ⋮ y m ) = ( a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ⋮ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ) 按照分母布局,我们可以得到: ∂ A y → ∂ y → = ( ∂ A y → ∂ y 1 ∂ A y → ∂ y 2 ⋮ ∂ A y → ∂ y m ) = ( a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m ∂ y 1 a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ∂ y 1 ⋯ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ∂ y 1 a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m ∂ y 2 a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ∂ y 2 ⋯ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ∂ y 2 ⋮ ⋮ ⋱ ⋮ a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m ∂ y m a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ∂ y m ⋯ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ∂ y m ) = ( a 11 a 21 ⋯ a m 1 a 12 a 22 ⋯ a m 2 ⋮ ⋮ ⋱ ⋮ a 1 m a 2 m ⋯ a m m ) = A T A\overrightarrow{y}=\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right). \left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right)=\left( \begin{matrix} a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m\\ a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m\\ \vdots \\ a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m\\ \end{matrix} \right)\\ 按照分母布局,我们可以得到:\\ \frac{\partial{A\overrightarrow{y}}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{A\overrightarrow{y}}}{\partial{y_1}} \\ \frac{\partial{A\overrightarrow{y}}}{\partial{y_2}} \\ \vdots \\ \frac{\partial{A\overrightarrow{y}}}{\partial{y_m}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m}{\partial{y_1}} & \frac{a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m}{\partial{y_1}} & \cdots & \frac{a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m}{\partial{y_1}} \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m}{\partial{y_2}} & \frac{a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m}{\partial{y_2}} & \cdots & \frac{a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m}{\partial{y_2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m}{\partial{y_m}} & \frac{a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m}{\partial{y_m}} & \cdots & \frac{a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m}{\partial{y_m}} \\ \end{matrix} \right)\\ =\left( \begin{matrix} a_{11} & a_{21} & \cdots & a_{m1}\\ a_{12} & a_{22} & \cdots & a_{m2}\\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{mm}\\ \end{matrix} \right)=A^T\\ Ay = a11a21am1a12a22am2a1ma2mamm . y1y2ym = a11y1+a12y2++a1myma21y1+a22y2++a2mymam1y1+am2y2++ammym 按照分母布局,我们可以得到:y Ay = y1Ay y2Ay ymAy = y1a11y1+a12y2++a1mymy2a11y1+a12y2++a1mymyma11y1+a12y2++a1mymy1a21y1+a22y2++a2mymy2a21y1+a22y2++a2mymyma21y1+a22y2++a2mymy1am1y1+am2y2++ammymy2am1y1+am2y2++ammymymam1y1+am2y2++ammym = a11a12a1ma21a22a2mam1am2amm =AT

同理,我们知道 y T → A = ( y 1 , y 2 , ⋯ , y m ) . ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) = ( a 11 y 1 + a 21 y 2 + ⋯ + a m 1 y m a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ⋮ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ) ∂ y T → A ∂ y → = ( a 11 y 1 + a 21 y 2 + ⋯ + a m 1 y m ∂ y 1 a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ∂ y 1 ⋯ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ∂ y 1 a 11 y 1 + a 12 y 2 + ⋯ + a m 1 y m ∂ y 2 a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ∂ y 2 ⋯ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ∂ y 2 ⋮ ⋮ ⋱ ⋮ a 11 y 1 + a 12 y 2 + ⋯ + a m 1 y m ∂ y m a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ∂ y m ⋯ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ∂ y m ) = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) = A 同理,我们知道\overrightarrow{y^T}A=(y_1,y_2,\cdots,y_m).\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right)=\left( \begin{matrix} a_{11}y_1 + a_{21}y_2 + \cdots + a_{m1}y_m\\ a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m\\ \vdots \\ a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m\\ \end{matrix} \right)\\ \frac{\partial{\overrightarrow{y^T}}A}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{a_{11}y_1 + a_{21}y_2 + \cdots + a_{m1}y_m}{\partial{y_1}} & \frac{a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m}{\partial{y_1}} & \cdots & \frac{a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m}{\partial{y_1}} \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{m1}y_m}{\partial{y_2}} & \frac{a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m}{\partial{y_2}} & \cdots & \frac{a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m}{\partial{y_2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{m1}y_m}{\partial{y_m}} & \frac{a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m}{\partial{y_m}} & \cdots & \frac{a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m}{\partial{y_m}} \\ \end{matrix} \right)\\ =\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right)=A 同理,我们知道yT A=(y1,y2,,ym). a11a21am1a12a22am2a1ma2mamm = a11y1+a21y2++am1yma12y1+a22y2++am2yma1my1+a2my2++ammym y yT A= y1a11y1+a21y2++am1ymy2a11y1+a12y2++am1ymyma11y1+a12y2++am1ymy1a12y1+a22y2++am2ymy2a12y1+a22y2++am2ymyma12y1+a22y2++am2ymy1a1my1+a2my2++ammymy2a1my1+a2my2++ammymyma1my1+a2my2++ammym = a11a21am1a12a22am2a1ma2mamm =A

常用特例2:
已知 y → = ( y 1 y 2 ⋮ y m ) ,方阵 A = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) , 证明 ∂ y → T A y → ∂ y → = A y → + A T y → ( 分母布局 ) 另外,当 A 对称时, A T = A , 左式 = 2 A y → 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right),方阵A=\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right),证明\frac{\partial{\overrightarrow{y}^TA\overrightarrow{y}}}{\partial\overrightarrow{y}}=A\overrightarrow{y} + A^T\overrightarrow{y}(分母布局)\\ 另外,当A对称时,A^T=A,左式=2A\overrightarrow{y} 已知y = y1y2ym ,方阵A= a11a21am1a12a22am2a1ma2mamm ,证明y y TAy =Ay +ATy (分母布局)另外,当A对称时,AT=A,左式=2Ay
我们A为2阶方阵,那么:

在这里插入图片描述

我们再利用分母布局:

在这里插入图片描述

3.4 利用常用特例求解线性回归的解析解

线性回归可以用 y = X w + b 进行表示 我们将偏置 b 合并到参数 w 中,合并⽅法是在包含所有参数的矩阵中附加⼀列 那么,线性回归的代价函数可以表示为: E w = ( y − X w ) T ( y − X w ) = ( y T − w T X ) ( y − X w ) = y T y − y T X w − w T X T y + w T X T X w 因此 ∂ E w ∂ W = ∂ ( y T y ) ∂ w − ∂ ( y T X w ) ∂ w − ∂ ( w T X T y ) ∂ w + ∂ ( w T X T X w ) ∂ w = 0 − X T y ( 常用特例 1 ) − X T y ( 常用特例 1 ) + 2 X T X w ( 常用特例 2 , X T X 为对称阵 ) = 2 X T X w − 2 X T y 我们将损失关于 w 的导数设置为 0 ,那么可以得到解析解: w = ( X T X ) − 1 X T y 线性回归可以用y=Xw+b进行表示\\ 我们将偏置b合并到参数w中,合并⽅法是在包含所有参数的矩阵中附加⼀列\\ 那么,线性回归的代价函数可以表示为:\\ E_w=(y-Xw)^T(y-Xw) \\ =(y^T-w^TX)(y-Xw) \\ =y^Ty-y^TXw-w^TX^Ty+w^TX^TXw \\ 因此\frac{\partial{E_w}}{\partial{W}}= \frac{\partial{(y^Ty)}}{\partial{w}}- \frac{\partial{(y^TXw)}}{\partial{w}}- \frac{\partial{(w^TX^Ty)}}{\partial{w}}+ \frac{\partial{(w^TX^TXw)}}{\partial{w}}\\ =0-X^Ty(常用特例1)-X^Ty(常用特例1)+2X^TXw(常用特例2,X^TX为对称阵)\\ =2X^TXw-2X^Ty \\ 我们将损失关于w的导数设置为0,那么可以得到解析解:w=(X^TX)^{-1}X^Ty 线性回归可以用y=Xw+b进行表示我们将偏置b合并到参数w中,合并法是在包含所有参数的矩阵中附加那么,线性回归的代价函数可以表示为:Ew=(yXw)T(yXw)=(yTwTX)(yXw)=yTyyTXwwTXTy+wTXTXw因此WEw=w(yTy)w(yTXw)w(wTXTy)+w(wTXTXw)=0XTy(常用特例1)XTy(常用特例1)+2XTXw(常用特例2XTX为对称阵)=2XTXw2XTy我们将损失关于w的导数设置为0,那么可以得到解析解:w=(XTX)1XTy

4、向量求导的链式法则

举例证明链式求导法则为: ∂ J ∂ u → = ∂ y → ( u → ) ∂ u → . ∂ J ∂ y → ( u → ) 举例证明链式求导法则为:\frac{\partial{J}}{\partial{\overrightarrow{u}}}=\frac{\partial{\overrightarrow{y}(\overrightarrow{u})}}{\partial{\overrightarrow{u}}}.\frac{\partial{J}}{\partial{\overrightarrow{y}(\overrightarrow{u})}} 举例证明链式求导法则为:u J=u y (u ).y (u )J

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2808130.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Java学习笔记------继承

继承 Java中提供了一个关键字extends,用这个关键字,我们可以让一个类和另一个类建立继承关系 如图,Student和Teacher类中除了study()和teacher()两个成员函数不同,其他重复了&…

森歌深化体育营销战略,揭晓2024奥运新代言人,携手共创影响力奇迹

2024年,奥运龙年的春节将将过去,各大高端品牌便纷纷开始激烈博弈。森歌有备而来!布局早,积累深,以其深入骨髓的体育情怀和独具匠心的品牌策略,成为厨电行业的佼佼者。2月27日-2月28日,森歌将在杭…

c++: 用c++语言对车辆进行建模

一 原理 1.1 阿克曼转向模型 转向半径:后轴中心点到原点O的距离 已知道转向半径,可以反求转向角。或者知道转向角,可以求出转向半径。 四个顶点的转向半径。 还要定义这两个参数 1.2 车辆运动的建模 运动写在大的while循环里。 绘制车辆的思路;(1)清

C++之std::tuple(二) : 揭秘底层实现原理

相关系列文章 C之std::tuple(二) : 揭秘底层实现原理 C三剑客之std::any(一) : 使用 C之std::tuple(一) : 使用精讲(全) C三剑客之std::variant(一) : 使用 C三剑客之std::variant(二):深入剖析 深入理解可变参数(va_list、std::initializer_list和可变参数模版) st…

《论文阅读》利用提取的情感原因提高共情对话生成的内容相关性 CCL 2022

《论文阅读》利用提取的情感原因提高共情对话生成的内容相关性 前言简介模型架构情绪识别情绪原因提取实验结果示例总结前言 亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~ 无抄袭,无复制,纯手工敲击键盘~ 今天为大家带来的是《Using Extracted Emotion Caus…

module ‘json‘ has no attribute ‘dumps‘

如果在使用Python的json模块时遇到AttributeError: module json has no attribute dumps错误,通常是因为在Python环境中json模块不支持dumps方法。这种情况可能是因为Python的json模块被重命名或修改过导致的。 解决方法可以尝试以下几种: 1.检查Pytho…

从docx提取文本的Python实战代码

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

2.23 Qt day4 事件机制+定时器事件+键盘事件+鼠标事件

思维导图&#xff1a; 做一个闹钟&#xff0c;在行编辑器里输入定闹钟的时间&#xff0c;时间到了就语音播报文本里的内容&#xff0c;播报五次 widget.h&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QDebug>//输出类 #include<…

使用matlab对探空站IGRAv2数据进行提取

目录 1.IGRA的下载 2.以CHM00050527-data.txt数据为例&#xff1a; 3.使用matlab进行数据提取&#xff1a; 4.mat文件的构成如下图&#xff1a; 5. Matlab 获取代码可关注微信公众号WZZHHH&#xff0c;或者咸鱼关注&#xff1a;WZZHHH123 6.部分代码展示&#xff1a; 1.I…

用什么软件制作电子杂志

想要制作高大上的电子杂志&#xff1f;别再烦恼啦&#xff01;今天给大家推荐一款超级实用的软件&#xff0c;让你轻松制作出专业水准的电子杂志&#xff01; 这款软件功能强大&#xff0c;操作简单&#xff0c;适合所有对设计感兴趣的小伙伴们。无论是新手还是专业设计师&…

神经网络系列---感知机(Neuron)

文章目录 感知机(Neuron)感知机(Neuron)的决策函数可以表示为&#xff1a;感知机(Neuron)的学习算法主要包括以下步骤&#xff1a;感知机可以实现逻辑运算中的AND、OR、NOT和异或(XOR)运算。 感知机(Neuron) 感知机(Neuron)是一种简单而有效的二分类算法&#xff0c;用于将输入…

Cenos7搭建gitLib服务器(全网最详细)

vm安装Cenos7可参考以下链接 VM安装Cenos7(全网超详细保姆教程)_vm centos7安装教程-CSDN博客 一.安装并配置必要的依赖关系 1.1安装依赖包 安装curl、policycoreutils-python、openssh-server依赖包 yum install -y curl policycoreutils-python openssh-server 在这个…

【嵌入式实践】【芝麻】【目录】从0到1给电动车添加指纹锁

0. 前言 该项目是基于stm32F103和指纹模块做了一个通过指纹锁控制电动车的小工具。支持添加指纹、删除指纹&#xff0c;电动车进入P档等待时计时&#xff0c;计时超过5min则自动锁车&#xff0c;计时过程中按刹车可中断P档状态&#xff0c;同时中断锁车计时。改项目我称之为“芝…

Zookeeper客户端命令、JAVA API、监听原理、写数据原理以及案例

1. Zookeeper节点信息 指定服务端&#xff0c;启动客户端命令&#xff1a; bin/zkCli.sh -server 服务端主机名:端口号 1&#xff09;ls / 查看根节点下面的子节点 ls -s / 查看根节点下面的子节点以及根节点详细信息 其中&#xff0c;cZxid是创建节点的事务id&#xff0c…

【Java程序设计】【C00302】基于Springboot的校园失物招领管理系统(有论文)

基于Springboot的校园失物招领管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的校园失物招领网站&#xff0c;本系统有管理员以及用户二种角色权限&#xff1b; 系统整体功能有&#xff1a;操作日志管理、…

[晓理紫]每日论文分享(有中文摘要,源码或项目地址)--大模型、扩散模型

专属领域论文订阅 VX 关注{晓理紫}&#xff0c;每日更新论文&#xff0c;如感兴趣&#xff0c;请转发给有需要的同学&#xff0c;谢谢支持 如果你感觉对你有所帮助&#xff0c;请关注我&#xff0c;每日准时为你推送最新论文。 分类: 大语言模型LLM视觉模型VLM扩散模型视觉语言…

5分钟轻松帮你EasyRecovery恢复女朋友照片

相信有不少男性电脑玩家都会将女朋友的照片存放在电脑硬盘之内&#xff0c;作为珍贵的收藏和回忆。但是在某些时候&#xff0c;如果我们错误地删除了这些照片&#xff0c;或者由于系统问题导致其中的照片丢失&#xff0c;那么我们怎么找回女朋友的照片&#xff1f;这个问题就足…

【统计分析数学模型】聚类分析: 系统聚类法

【统计分析数学模型】聚类分析&#xff1a; 系统聚类法 一、聚类分析1. 基本原理2. 距离的度量&#xff08;1&#xff09;变量的测量尺度&#xff08;2&#xff09;距离&#xff08;3&#xff09;R语言计算距离 三、聚类方法1. 系统聚类法2. K均值法 三、示例1. Q型聚类&#x…

用c# 自己封装的Modbus工具类库源码

前言 Modbus通讯协议在工控行业的应用是很多的&#xff0c;并且也是上位机开发的基本技能之一。相关的类库也很多也很好用。以前只负责用&#xff0c;对其并没有深入学习和了解。前段时间有点空就在这块挖了挖。想做到知其然还要知其所以然。所以就有了自己封装的Modbus工具类库…

28V270V航空交直流线缆:满足飞机对高质量电气连接的需求

28V/270V航空交直流线缆&#xff1a;航空业的“神经系统” 在现代航空业中&#xff0c;无论是飞机、直升机还是其他飞行器&#xff0c;都离不开一种重要的设备&#xff0c;那就是航空28V/270V航空交直流线缆。航空28V/270V航空交直流线缆是飞行器上的电气系统的重要组成部分&am…