神经网络系列---感知机(Neuron)


文章目录

    • 感知机(Neuron)
      • 感知机(Neuron)的决策函数可以表示为:
      • 感知机(Neuron)的学习算法主要包括以下步骤:
      • 感知机可以实现逻辑运算中的AND、OR、NOT和异或(XOR)运算。


感知机(Neuron)

感知机(Neuron)是一种简单而有效的二分类算法,用于将输入数据划分为两个类别。它是机器学习中最早的分类算法之一,由罗森布拉特(Rosenblatt)在1957年提出。

感知机(Neuron)的基本思想是通过一个决策函数将输入数据映射到特定的输出类别。它通过对输入向量进行加权求和,并将结果传递给一个激活函数来产生输出。感知机(Neuron)的学习过程主要涉及确定合适的权重,以便对不同的输入样本进行正确的分类。

在这里插入图片描述

感知机(Neuron)的决策函数可以表示为:

    f(x) = sign(w * x + b)sign(x) = {+1, if x >= 0,-1, if x < 0}

在这里插入图片描述

它将大于等于0的值映射为+1,小于0的值映射为-1。在感知机(Neuron)中,"sign"函数被用于判断输入的加权和是否超过了某个阈值,从而确定输入被分类为哪个类别。
其中,x是输入向量,w是权重向量,b是偏置项,sign是符号函数,将输入的实数映射为+1或-1,表示两个不同的类别。

感知机(Neuron)的学习算法主要包括以下步骤:

  1. 初始化权重向量和偏置项。
  2. 针对训练数据中的每个样本,计算决策函数的输出。
  3. 根据实际输出和期望输出之间的差异,更新权重向量和偏置项。
  4. 重复步骤2和步骤3,直到所有训练样本都被正确分类或达到停止条件。

需要注意的是,感知机(Neuron)只适用于线性可分的问题,即可以通过一个超平面将两个类别的数据完全分开。对于线性不可分的问题,感知机(Neuron)算法无法收敛。

虽然感知机(Neuron)算法在解决简单分类问题上很有用,但它对于复杂问题的处理能力有限。后续发展出了更多强大的分类算法,如支持向量机(Support Vector Machine)和神经网络(Neural Networks)。


y=ax+c  ==> ax +(-y)+c =0  //表示一条线 一维形式z=ax+by+d  ==> ax +by+(-z)+d =0  //表示一个平面 二维形式
类似于神经网络中的 权重和偏置

在这里插入图片描述

ax +by+c =0  //表示所有数据都在这一条线上

在这里插入图片描述

ax +by+c > 0  //表示所有数据都在这一条线的上方

在这里插入图片描述

ax +by+c < 0  //表示所有数据都在这一条线的上下方

在这里插入图片描述

多维度表示:相乘在相加

在这里插入图片描述

用矩阵表示

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

下面用感知机(Neuron) 表达 与(AND)、 或(OR) 、非(NOT) 、异或(XOR) 、 运算。

在这里插入图片描述

感知机可以实现逻辑运算中的AND、OR、NOT和异或(XOR)运算。

这里我将为你详细说明如何使用感知机实现这些逻辑运算。

  1. AND运算:
    AND运算是一个二元运算,当且仅当两个输入都为1时,输出为1,否则输出为0。使用感知机可以实现AND运算,具体步骤如下:
  • 设置权重向量为 w = [1, 1],偏置项为 b = -1.5。
  • 对于输入向量 x = [x1, x2],计算加权和:z = w * x + b。
  • 使用符号函数(sign)作为激活函数,即 f(x) = sign(z)。也就是f(x) = sign(x1 + x2 - 1.5),其中sign函数将大于等于0的值映射为1,小于0的值映射为-1。
  • 当且仅当 f(x) = 1 时,表示 AND 运算结果为真,否则为假。
  1. OR运算:
    OR运算也是一个二元运算,当两个输入中至少一个为1时,输出为1,否则输出为0。使用感知机可以实现OR运算,具体步骤如下:
  • 设置权重向量为 w = [1, 1],偏置项为 b = -0.5。
  • 对于输入向量 x = [x1, x2],计算加权和:z = w * x + b。
  • 使用符号函数(sign)作为激活函数,即 f(x) = sign(z)。也就是f(x) = sign(x1 + x2 - 0.5),其中sign函数将大于等于0的值映射为1,小于0的值映射为-1。
  • 当且仅当 f(x) = 1 时,表示 OR 运算结果为真,否则为假。
  1. NOT运算:
    NOT运算是一个一元运算,当输入为1时,输出为0,当输入为0时,输出为1。使用感知机可以实现NOT运算,具体步骤如下:
  • 设置权重向量为 w = [-1],偏置项为 b = 0.5。
  • 对于输入 x,计算加权和:z = w * x + b。
  • 使用符号函数(sign)作为激活函数,即 f(x) = sign(z)。也就是f(x) = sign( -x + 0.5),其中sign函数将大于等于0的值映射为1,小于0的值映射为-1。
  • 当且仅当 f(x) = 1 时,表示 NOT 运算结果为真,否则为假。

异或运算 一个感知机无法实现

在这里插入图片描述

在这里插入图片描述

  1. 描述上图 异或(XOR)运算:
    异或运算是一个二元运算,当两个输入相同时,输出为0;当两个输入不同时,输出为1。使用单个感知机无法直接实现异或运算,因为它不是线性可分的。但可以通过组合多个感知机实现。具体步骤如下:

一种常用的方法是使用两个感知机构建一个多层感知机(Multi-Layer Perceptron,MLP)。MLP由输入层、隐藏层和输出层组成,每个层都由多个感知机(神经元)组成。以下是使用MLP实现异或运算的具体步骤:

  1. 构建输入层和隐藏层:
  • 输入层有两个神经元,表示输入的两个二进制位(x1和x2)
  • 隐藏层有两个神经元,用于引入非线性映射,帮助解决异或运算的非线性可分性。
  1. 设置隐藏层的权重和偏置项:
  • 第一个隐藏层神经元,先对x1进行非(NOT)运算,也就是01,非00

  • 然后再进行与(AND)运算。(h1)的权重向量为 w1 = [1, 1],偏置项为 b1 = -1.5。即:f(x) = sign(x1 + x2 - 1.5)。

  • 第二个隐藏层神经元,先对x2进行非(NOT)运算,也就是01,非00

  • 然后再进行与(AND)运算。(h2)的权重向量为 w2 = [1, 1],偏置项为 b2 = -1.5。即:f(x) = sign(x1 + x2 - 1.5)。

  1. 设置输出层的权重和偏置项:
  • 输出层有一个神经元(y),表示异或运算的结果。
  • 输出层进行或(OR)运算,权重向量为 w3 = [1, 1],偏置项为 b3 = -0.5。
  1. 计算前向传播:
  • 对于输入向量 x = [x1, x2],首先计算隐藏层神经元的输出:
    h1 = sign(w1 * x + b1)
    h2 = sign(w2 * x + b2)
  • 然后,将隐藏层神经元的输出作为输入传递给输出层神经元:
    y = sign(w3 * [h1, h2] + b3)
  1. 输出结果:
  • 当 y = 1 时,表示异或运算的结果为真(1)。
  • 当 y = -1 时,表示异或运算的结果为假(0)。

通过这样的多层感知机结构和非线性激活函数(如符号函数),可以实现异或运算。这个例子中使用了一个隐藏层,但在实际应用中可能需要更多的隐藏层和神经元来处理更复杂的问题。这种多层感知机结构是神经网络的基础,也被称为前馈神经网络(Feedforward Neural Network)。

5. 第二种 异或(XOR)运算:
异或运算是一个二元运算,当两个输入相同时,输出为0;当两个输入不同时,输出为1。使用单个感知机无法直接实现异或运算,因为它不是线性可分的。但可以通过组合多个感知机实现。具体步骤如下:一种常用的方法是使用两个感知机构建一个多层感知机(Multi-Layer Perceptron,MLP)。MLP由输入层、隐藏层和输出层组成,每个层都由多个感知机(神经元)组成。以下是使用MLP实现异或运算的具体步骤:1. 构建输入层和隐藏层:
- 输入层有两个神经元,表示输入的两个二进制位(x1和x2)。
- 隐藏层有两个神经元,用于引入非线性映射,帮助解决异或运算的非线性可分性。2. 设置隐藏层的权重和偏置项:
- 第一个隐藏层神经元(h1)的权重向量为 w1 = [1, 1],偏置项为 b1 = -0.5。
- 第二个隐藏层神经元(h2)的权重向量为 w2 = [-1, -1],偏置项为 b2 = 1.5。3. 设置输出层的权重和偏置项:
- 输出层有一个神经元(y),表示异或运算的结果。
- 输出层的权重向量为 w3 = [1, 1],偏置项为 b3 = -1.5。4. 计算前向传播:
- 对于输入向量 x = [x1, x2],首先计算隐藏层神经元的输出:h1 = sign(w1 * x + b1)h2 = sign(w2 * x + b2)
- 然后,将隐藏层神经元的输出作为输入传递给输出层神经元:y = sign(w3 * [h1, h2] + b3)5. 输出结果:
- 当 y = 1 时,表示异或运算的结果为真(1)。
- 当 y = -1 时,表示异或运算的结果为假(0)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2808112.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Cenos7搭建gitLib服务器(全网最详细)

vm安装Cenos7可参考以下链接 VM安装Cenos7(全网超详细保姆教程)_vm centos7安装教程-CSDN博客 一.安装并配置必要的依赖关系 1.1安装依赖包 安装curl、policycoreutils-python、openssh-server依赖包 yum install -y curl policycoreutils-python openssh-server 在这个…

【嵌入式实践】【芝麻】【目录】从0到1给电动车添加指纹锁

0. 前言 该项目是基于stm32F103和指纹模块做了一个通过指纹锁控制电动车的小工具。支持添加指纹、删除指纹&#xff0c;电动车进入P档等待时计时&#xff0c;计时超过5min则自动锁车&#xff0c;计时过程中按刹车可中断P档状态&#xff0c;同时中断锁车计时。改项目我称之为“芝…

Zookeeper客户端命令、JAVA API、监听原理、写数据原理以及案例

1. Zookeeper节点信息 指定服务端&#xff0c;启动客户端命令&#xff1a; bin/zkCli.sh -server 服务端主机名:端口号 1&#xff09;ls / 查看根节点下面的子节点 ls -s / 查看根节点下面的子节点以及根节点详细信息 其中&#xff0c;cZxid是创建节点的事务id&#xff0c…

【Java程序设计】【C00302】基于Springboot的校园失物招领管理系统(有论文)

基于Springboot的校园失物招领管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的校园失物招领网站&#xff0c;本系统有管理员以及用户二种角色权限&#xff1b; 系统整体功能有&#xff1a;操作日志管理、…

[晓理紫]每日论文分享(有中文摘要,源码或项目地址)--大模型、扩散模型

专属领域论文订阅 VX 关注{晓理紫}&#xff0c;每日更新论文&#xff0c;如感兴趣&#xff0c;请转发给有需要的同学&#xff0c;谢谢支持 如果你感觉对你有所帮助&#xff0c;请关注我&#xff0c;每日准时为你推送最新论文。 分类: 大语言模型LLM视觉模型VLM扩散模型视觉语言…

5分钟轻松帮你EasyRecovery恢复女朋友照片

相信有不少男性电脑玩家都会将女朋友的照片存放在电脑硬盘之内&#xff0c;作为珍贵的收藏和回忆。但是在某些时候&#xff0c;如果我们错误地删除了这些照片&#xff0c;或者由于系统问题导致其中的照片丢失&#xff0c;那么我们怎么找回女朋友的照片&#xff1f;这个问题就足…

【统计分析数学模型】聚类分析: 系统聚类法

【统计分析数学模型】聚类分析&#xff1a; 系统聚类法 一、聚类分析1. 基本原理2. 距离的度量&#xff08;1&#xff09;变量的测量尺度&#xff08;2&#xff09;距离&#xff08;3&#xff09;R语言计算距离 三、聚类方法1. 系统聚类法2. K均值法 三、示例1. Q型聚类&#x…

用c# 自己封装的Modbus工具类库源码

前言 Modbus通讯协议在工控行业的应用是很多的&#xff0c;并且也是上位机开发的基本技能之一。相关的类库也很多也很好用。以前只负责用&#xff0c;对其并没有深入学习和了解。前段时间有点空就在这块挖了挖。想做到知其然还要知其所以然。所以就有了自己封装的Modbus工具类库…

28V270V航空交直流线缆:满足飞机对高质量电气连接的需求

28V/270V航空交直流线缆&#xff1a;航空业的“神经系统” 在现代航空业中&#xff0c;无论是飞机、直升机还是其他飞行器&#xff0c;都离不开一种重要的设备&#xff0c;那就是航空28V/270V航空交直流线缆。航空28V/270V航空交直流线缆是飞行器上的电气系统的重要组成部分&am…

6、进程、服务管理

一、进程管理 1.概述 进程是正在执行的程序或命令&#xff0c;每一个进程都独立运行&#xff0c;都有自己的地址空间&#xff0c;并占用一定的系统资源以后开发会遇见&#xff1a; 端口占用出现程序假死、卡死 2.查看系统运行进程 语法 ps 参数ps –a:显示当前终端下的所有…

#FPGA(基础知识)

1.IDE:Quartus II 2.设备&#xff1a;Cyclone II EP2C8Q208C8N 3.实验&#xff1a;正点原子-verilog基础知识 4.时序图&#xff1a; 5.步骤 6.代码&#xff1a;

Spring Session:Redis序列化配置|Session事件监听

Spring Session是可配置的。 Redis Configuration JSON序列化配置 Spring Session默认使用Java对象序列化机制对Session属性值进行序列化。 预定义类SysUser 先来定义一个SysUser类&#xff0c;在下面的演示案例中会用到。 package com.example.demo.model.entity;import j…

Sqli-labs靶场第11关详解[Sqli-labs-less-11]

Sqli-labs-Less-11 前言&#xff1a; SQL注入的三个条件&#xff1a; ①参数可控&#xff1b;&#xff08;从参数输入就知道参数可控&#xff09; ②参数过滤不彻底导致恶意代码被执行&#xff1b;&#xff08;需要在测试过程中判断&#xff09; ③参数带入数据库执行。&…

Linux环境安装ffmpeg6.x

1.官网ffmpeg下载源码 https://ffmpeg.org/download.html#build-windows 2.未安装x264库则先安装配置 可以先查询x264库: whereis libx264 安装编译工具和依赖库&#xff1a; sudo yum install gcc make cmake mercurial git yasm pkgconfig autoconf automake libtool sudo…

docker搭建zookeeper集群

文章目录 1. 集群搭建2. Leader选举3. Zookeeper集群角色 1. 集群搭建 这里我们使用docker-compose 搭建伪集群 version: 3.1 services:zoo1:image: zookeeperrestart: alwayscontainer_name: zoo1ports:- 2181:2181volumes:- /home/zk/zoo1/data:/data- /home/zk/zoo1/datal…

算法沉淀——动态规划之简单多状态 dp 问题(上)(leetcode真题剖析)

算法沉淀——动态规划之简单多状态 dp 问题上 01.按摩师02.打家劫舍 II03.删除并获得点数04.粉刷房子 01.按摩师 题目链接&#xff1a;https://leetcode.cn/problems/the-masseuse-lcci/ 一个有名的按摩师会收到源源不断的预约请求&#xff0c;每个预约都可以选择接或不接。在…

选择排序-第15届蓝桥第4次STEMA测评Scratch真题精选

[导读]&#xff1a;超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成&#xff0c;后续会不定期解读蓝桥杯真题&#xff0c;这是Scratch蓝桥杯真题解析第172讲。 第15届蓝桥杯第4次STEMA测评已于2024年1月28日落下帷幕&#xff0c;编程题一共有6题&#xff0c;分别如下&a…

吴恩达deeplearning.ai:Tensorflow训练一个神经网络

以下内容有任何不理解可以翻看我之前的博客哦&#xff1a;吴恩达deeplearning.ai 在之前的博客中。我们陆续学习了各个方面的有关深度学习的内容&#xff0c;今天可以从头开始训练一个神经网络了。 Tensorflow训练神经网络模型 我们使用之前用过的例子&#xff1a; 这个神经…

SSM项目集成Spring Security 4.X版本 之 加入DWZ,J-UI框架实现登录和主页菜单显示

目录 前言 一、加入DWZ J-UI框架 二、实现登录页面 三、实现主页面菜单显示 前言 大家好&#xff01;写文章之前先列出几篇相关文章。本文内容也在其项目中接续实现。 一. SSM项目集成Spring Security 4.X版本&#xff08;使用spring-security.xml 配置文件方式&#xff…

HDL FPGA 学习 - Quartus II 工程搭建,ModelSim 仿真,时序分析,IP 核使用,Nios II 软核使用,更多技巧和规范总结

目录 工程搭建、仿真与时钟约束 一点技巧 ModelSim 仿真 Timing Analyzer 时钟信号约束 SignalTap II 使用 In-System Memory Content Editor 使用 记录 QII 的 IP 核使用 记录 Qsys/Nios II 相关 记录 Qsys 的 IP 核使用 封装 Avalon IP 更多小技巧教程文章 更多好…