检索增强生成(RAG)-重新排序方法

每日推荐一篇专注于解决实际问题的外文,精准翻译并深入解读其要点,助力读者培养实际问题解决和代码动手的能力。

欢迎关注公众号(NLP Research),及时查看最新内容

原文标题:Advanced RAG 04: Re-ranking

原文地址:https://medium.com/towards-artificial-intelligence/advanced-rag-04-re-ranking-85f6ae8170b1


从原则到两种主流实施方法

重新排序在检索增强生成(RAG)过程中起着至关重要的作用。在简单的 RAG 方法中,可能会检索到大量上下文,但并非所有上下文都与问题相关。重新排序可以对文档进行重新排序和过滤,将相关文档放在最前面,从而提高 RAG 的效率。

本文介绍了 RAG 的重新排序技术,并演示了如何使用两种方法整合重新排序功能。

重新排序(Re-ranking)简介

如图 1 所示,重新排序的任务就像一个智能过滤器。当检索器从索引集合中检索出多个上下文时,这些上下文可能与用户的查询具有不同的相关性。有些上下文可能非常相关(图 1 中红色方框中突出显示的内容),而其他上下文可能只是略有相关甚至不相关(图 1 中绿色和蓝色方框中突出显示的内容)。

重新排序的任务是评估这些上下文的相关性,并优先选择最有可能提供准确和相关答案的上下文。这样,LLM 就能在生成答案时优先考虑这些排名靠前的上下文,从而提高答案的准确性和质量。

简单地说,重新排序就像在开卷考试中帮助你从一堆学习材料中选择最相关的参考资料,这样你就能更高效、更准确地回答问题。

本文介绍的重新排序方法主要分为以下两种:

  • 重新排序模型:这些模型考虑了文档和查询之间的交互特征,以更准确地评估它们的相关性。

  • LLM:LLM 的出现为重新排序提供了新的可能性。通过彻底了解整个文档和查询,可以更全面地捕捉语义信息。

使用重新排序模型作为重排器

重新排序模型与嵌入模型不同,它将查询和上下文作为输入,直接输出相似性得分而不是嵌入得分。值得注意的是,重新排序模型是利用交叉熵损失进行优化的,因此相关性得分不局限于特定范围,甚至可以是负分。

目前,可用的重新排序模型并不多。一种选择是 Cohere 提供的在线模型,可以通过 API 访问。此外,还有一些开源模型,如 bge-reranker-base 和 bge-reranker-large 等。

图 2 显示了使用命中率(Hit Rate)和平均倒数排名(Mean Reciprocal Rank,MRR)指标的评估结果:

从评估结果可以看出:

  • 无论使用哪种嵌入模型,重新排序都能显示出更高的命中率和 MRR,这表明重新排序具有重大影响。

  • 目前,最好的重新排名模型是 Cohere,但它是一项付费服务。开源的 bge-reranker-large 模型具有与 Cohere 相似的功能。

  • 嵌入模型和重新排序模型的组合也会产生影响,因此开发人员可能需要在实际过程中尝试不同的组合。

本文将使用 bge-reranker-base 模型。

环境配置

导入相关库,设置环境变量和全局变量

import os
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_KEY"from llama_index import VectorStoreIndex, SimpleDirectoryReader
from llama_index.postprocessor.flag_embedding_reranker import FlagEmbeddingReranker
from llama_index.schema import QueryBundledir_path = "YOUR_DIR_PATH"

目录中只有一个 PDF 文件,即 “TinyLlama: An Open Source Small Language Model”。

(py) Florian:~ Florian$ ls /Users/Florian/Downloads/pdf_test/ tinyllama.pdf

使用 LlamaIndex 构建一个简单的检索器

documents = SimpleDirectoryReader(dir_path).load_data()
index = VectorStoreIndex.from_documents(documents)
retriever = index.as_retriever(similarity_top_k = 3)

基本检索

query = "Can you provide a concise description of the TinyLlama model?"
nodes = retriever.retrieve(query)
for node in nodes

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2807938.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

ros自定义action记录

文章目录 自定义action1. 定义action文件2. 修改 package.xml3. 修改 CMakeLists.txt4. 运行 catkin build5. simple_action_server.py6. simple_action_client.py 测试 自定义action ros 版本:kinetic 自定义test包的文件结构如下 |-- test | |-- CMakeLists.t…

IS(Inception Score)和FID(Frechet Inception Distance score)的定义,区别,联系。

IS(Inception Score)和FID(Frechet Inception Distance score)的定义,区别,联系: IS(Inception Score) 定义: IS基于Google的预训练网络Inception Net-V3。…

32单片机基础:对射式红外传感器计次

接线如下图: 在HardWare建立两个文件:如图 COuntSensor.c 如何配置外部中断,根据下面图,我们需要把外部中断从GPIO到NVIC这一路出现的外设模块都配置好。把这条信号打通就OK了。 1.配置RCC:把我们这里涉及的外设时钟都打开,不打…

C++ //练习 8.2 测试函数,调用参数为cin。

C Primer(第5版) 练习 8.2 练习 8.2 测试函数,调用参数为cin。 环境:Linux Ubuntu(云服务器) 工具:vim 代码块见练习8.1 /**************************************************************…

FariyGUI × Cocos Creator 3.x 弹窗制作

在fgui里制作一个弹窗 新建一个按钮,作为返回按钮 新建一个标签 做成这个样子 其中包含两个节点,名称分别为title和closeButton 可以阅读fgui的源码window.js得到,closeButton按钮只需要输入名称即可在contentPane设置时自动绑定。 且会…

聊聊JVM运行时数据区的堆内存

聊聊JVM运行时数据区的堆内存 内存模型变迁: Java堆在JVM启动时创建内存区域去实现对象、数组与运行时常量的内存分配,它是虚拟机管理最大的,也是垃圾回收的主要内存区域 。 内存模型变迁: 为什么要有年轻区和老年区?…

yolov8添加注意力机制模块-CBAM

修改 在tasks.py(路径:ultralytics-main/ultralytics-main - attention/ultralytics/nn/tasks.py)文件中,引入CBAM模块。因为yolov8源码中已经包含CBAM模块,在conv.py文件中(路径:ultralytics-…

[ 2024春节 Flink打卡 ] -- 优化(draft)

2024,游子未归乡。工作需要,flink coding。觉知此事要躬行,未休,特记 资源配置调优内存设置 TaskManager内存模型 https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/config/ TaskManager 内存模型…

查看仓库版本记录

打开命令行窗口 输入git log即可。 若发现分支不对,方法如下 查看项目目录,命令行输入dir可以查看 多个moudel,进入到需要查版本记录的moudel下 命令行输入cd .\文件名如wowo-win-server\ 切换到wowo-win-server文件夹下后,再输入…

【黑马程序员】2、TypeScript介绍_黑马程序员前端TypeScript教程,TypeScript零基础入门到实战全套教程

课程地址:【黑马程序员前端TypeScript教程,TypeScript零基础入门到实战全套教程】 https://www.bilibili.com/video/BV14Z4y1u7pi/?share_sourcecopy_web&vd_sourceb1cb921b73fe3808550eaf2224d1c155 目录 2、TypeScript初体验 2.1 安装编译TS的工…

Spring的优点

1.方便解耦,简化开发 Spring就是一个容器,可以将所有对象创建和关系维护交给Spring管理。 2.AOP编程支持 面向切面编程,方便实现程序进行权限拦截,运行监控等功能。 3.声明式事务的支持 通过配置完成事务的管理,…

三、OpenAI之Function Calling实战

黑8决心将对 OpenAI API 的学习应用到更多实际场景中,以展示新时代技术的巨大潜力。在接下来的日子里,他不断探索和尝试,将 API 中的各种功能融入到不同的生活场景中,取得了一系列令人瞩目的成果。 首先,他将 OpenAI …

三维模型轻量化、格式转换、可视化、数字孪生综合服务平台

老子云概述 老子云3D可视化快速开发平台,集云压缩、云烘焙、云存储云展示于一体,使3D模型资源自动输出至移动端PC端、Web端,能在多设备、全平台进行展示和交互,是全球领先、自主可控的自动化3D云引擎。 平台架构 平台特性 基于 …

在那静谧的冬天你飘落我荒凉心园

北风 - 刘蓝溪/梁弘志 --女--在那静谧的冬天你飘落我荒凉心园恰似北风一袭吹去秋意无限带来几片相思带来往日笑靥只见北风又起撒落枯叶片片--男--在那静谧的冬天你走进我冷漠心田恰似北风一袭吹去秋意无限北风婵媛白云白云本是轻烟只见北风又见带来白云片片--合--喔喔喔 海角…

【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture11 Advanced_CNN 实现GoogleNet和ResNet

【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture11 Advanced_CNN 代码: Pytorch实现GoogleNet import torch from torchvision import datasets, transforms from torch.utils.data import DataLoader import torch.nn as nn import torch.nn.fun…

遥感、航拍、影像等用于深度学习的数据集集合

遥感图像的纹理特征异常繁杂,地貌类型多变,人工提取往往存在特征提取困难和特征提取不准确的问题,同时,在这个过程中还会耗费海量的人力物力。随着计算力的突破、数据洪流的暴发和算法的不断创新,在具有鲜明“大数据”…

ArcgisForJS如何使用ArcGIS Server发布的GP服务?

文章目录 0.引言1.ArcGIS创建GP服务2.ArcGIS Server发布GP服务3.ArcgisForJS使用ArcGIS Server发布的GP服务 0.引言 ArcGIS for JavaScript(或简称AGJS)是一个强大的工具,它允许开发者使用JavaScript在Web浏览器中创建和运行ArcGIS应用程序。…

前端工程化面试题 | 18.精选前端工程化高频面试题

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Leetcode刷题笔记题解(C++):6. Z 字形变换

思路:遍历时候需要更新步进长度 到达0行的时候步进长度为1;到达最后一行numRows-1行的时候步进长度为-1;代码如下所示: class Solution { public:string convert(string s, int numRows) {//如果字符串长度为1或者所给行数为1 …

Linux安装jdktomcatMySQl一战完成

一、jdk安装具体步骤 1、查询是否有jdk java -version 2、进入opt目录 cd /opt/ 连接服务器工具 进入opt目录,把压缩文件上传 查询是否查询成功 进入解压到的目录 cd /usr/local/创建新文件夹 mkdir java 再回到opt目录进行解压 cd /opt 解压到刚刚创建的文…