数据结构-二分搜索树(Binary Search Tree)

一,简单了解二分搜索树

树结构:

问题:为什么要创造这种数据结构

1,树结构本身是一种天然的组织结构,就好像我们的文件夹一样,一层一层的.


2,树结构可以更高效的处理问题

二,二分搜索树的基础

1、二叉树
 

2,二叉树的重要特性

满二叉树

总结:

1. 叶子结点出现在二叉树的最底层,除叶子结点之外的其它结点都有两个孩子结点。
2. 一个层数为k 的满二叉树总结点数为:
3. 第i层上的结点数为:
4. 一个层数为k的满二叉树的叶子结点个数(也就是最后一层):
4、二叉树不一定是“满”的

3,二分搜索树

(注意:存储的元素必须具有可比性)

1,向二分搜索树添加元素

2,向二分搜索树查询操作

1,递归终止的条件 : if(node == null ) return false;
2,递归操作
if (ele.compareTo(node.ele) < 0) {
return search(node.left, ele);
} else if (ele.compareTo(node.ele) > 0) {
return search(node.right, ele);
} else {
return true;
}

3,二分搜索树的遍历操作

遍历操作:把树中所有节点都访问一遍

1前序遍历,

2中序遍历,

3后序遍历

4层序遍历(广度优先)

(代码,会在后面一起展现.)

4,二分搜索树寻找最大值,最小值

同样的原理找出二分搜素树中最大的元素,这里不在过多赘述.

5,删除操作
情况一:(叶子结点)

情况二、(非叶子结点)

删除后


6,删除二分搜索树中的节点

情况一:
 

情况二、
 

情况三:左右孩子都不为空的情况

使用Hibbard Deletion
 

三,用代码实现二分搜索树.实现相关功能.

(由于功能实现较多,代码较长)

其中包含是前面的各种功能操作的实现,包括,前,中,后,层,序把遍历,删除,添加,等等操作.需要的同学可以仔细查看.

mport java.nio.channels.Pipe;
import java.util.*;
import java.util.stream.Collectors;// 二分搜索树
public class BinarySearchTree<T extends Comparable<T>> {// 定义树的结点public class Node {T val;Node left; //  左孩子Node right; // 右孩子public Node(T val) {this.val = val;}}// 定义树的根private Node root;// 树根// 统计树中结点的个数private int size;// 树中结点的个数public BinarySearchTree() {this.root = null;this.size = 0;}// 判断树是否为空public boolean isEmpty() {return this.size == 0;}// 获取树中元素的个数public int getSize() {return this.size;}// 向树中添加元素public void add(T val) {this.size++;this.root = add(this.root, val);}/*** 添加的递归方法** @param node 树的根结点* @param val  添加的值*/private Node add(Node node, T val) {//递归终止的条件if (node == null) {Node leafNode = new Node(val);return leafNode;}// 递归操作if (node.val.compareTo(val) > 0) {node.left = add(node.left, val);} else {node.right = add(node.right, val);}return node;}// 将树中所有结点进行遍历--中序遍历( 深度优先搜索 DFS,使用的栈来实现)public String middleTravel() {List<T> result = new ArrayList<>();middleTravel(this.root, result);return result.stream().map(item -> item.toString()).collect(Collectors.joining(","));}/*** 中序遍历** @param node 树的根结点*/private void middleTravel(Node node, List<T> result) {// 递归终止的条件if (node == null) {return;}// 递归操作// 先遍历左子树middleTravel(node.left, result);//  打印当前值result.add(node.val);//  再遍历右子树middleTravel(node.right, result);}public String beforeTravel() {List<T> result = new ArrayList<>();beforeTravel(this.root, result);return result.stream().map(item -> item.toString()).collect(Collectors.joining(","));}/*** 前序遍历** @param node 树的根结点*/private void beforeTravel(Node node, List<T> result) {// 递归终止的条件if (node == null) {return;}// 递归操作//  打印当前值result.add(node.val);// 先遍历左子树beforeTravel(node.left, result);//  再遍历右子树beforeTravel(node.right, result);}public String afterTravel() {List<T> result = new ArrayList<>();afterTravel(this.root, result);return result.stream().map(item -> item.toString()).collect(Collectors.joining(","));}/*** 后序遍历** @param node 树的根结点*/private void afterTravel(Node node, List<T> result) {// 递归终止的条件if (node == null) {return;}// 递归操作// 先遍历左子树afterTravel(node.left, result);//  再遍历右子树afterTravel(node.right, result);//  打印当前值result.add(node.val);}// 查找的方法public boolean contains(T val) {return contains(this.root, val);}/*** 从以node为根的二分搜索树中查找元素val** @param node 根节点* @param val  要搜索的值* @return*/private boolean contains(Node node, T val) {// 递归到底的情况if (node == null) {return false;}// 递归操作if (node.val.compareTo(val) == 0) {return true;} else if (node.val.compareTo(val) > 0) {return contains(node.left, val);} else {return contains(node.right, val);}}// 树的层序遍历(广度优先搜索  BFS,使用队列来实现)public String levelTravel() {List<String> list = new ArrayList<>();// 1、 创建一个队列Queue<AbstractMap.SimpleEntry<Integer, Node>> queue = new LinkedList<>();// 2、将根结点入入队if (this.root != null) {queue.offer(new AbstractMap.SimpleEntry<>(1, this.root));}// 3、遍历队列while (!queue.isEmpty()) {AbstractMap.SimpleEntry<Integer, Node> temp = queue.poll();Node value = temp.getValue();int key = temp.getKey();//3-1  先将内容保存list.add(value.val.toString() + "------" + key);// 3-2  判断左子树是否为空,不为空就入队if (value.left != null) {queue.offer(new AbstractMap.SimpleEntry<>(key + 1, value.left));}// 3-3 判断右子树是否为空,不为空就入队if (value.right != null) {queue.offer(new AbstractMap.SimpleEntry<>(key + 1, value.right));}}return list.stream().collect(Collectors.joining(","));}public List<List<T>> levelOrder() {// 返回值类型是啥,就创建啥List<List<T>> result = new ArrayList<>();// 1、 创建一个队列Queue<AbstractMap.SimpleEntry<Integer, Node>> queue = new LinkedList<>();// 2、将根结点入入队if (this.root != null) {queue.offer(new AbstractMap.SimpleEntry<>(1, this.root));}while (!queue.isEmpty()) {AbstractMap.SimpleEntry<Integer, Node> temp = queue.poll();Node value = temp.getValue();int key = temp.getKey();//3-1  先将内容保存if(result.get(key-1)==null){result.add(new ArrayList<>());}result.get(key-1).add(value.val);// 3-2  判断左子树是否为空,不为空就入队if (value.left != null) {queue.offer(new AbstractMap.SimpleEntry<>(key + 1, value.left));}// 3-3 判断右子树是否为空,不为空就入队if (value.right != null) {queue.offer(new AbstractMap.SimpleEntry<>(key + 1, value.right));}}return result;}// Pair对public class Pair<Node> {private Node value; // 保存值private int key; // 保存层public Pair(Node value, int key) {this.value = value;this.key = key;}public Node getValue() {return value;}public int getKey() {return key;}}// 从二分搜索树中找最小值(在整棵树的最左边)public T getMinVal() {// 判断树是否为空if (this.root == null) {return null;}Node curNode = this.root;while (curNode.left != null) {curNode = curNode.left;}return curNode.val;}public T getMinValDG() {// 判断树是否为空if (this.root == null) {return null;}return getMinValDG(this.root).val;}/*** 从以node为根的二分搜索树中查找最小值** @param node 树的根节点*/private Node getMinValDG(Node node) {//递归终止的条件if (node.left == null) {return node;}// 递归操作return getMinValDG(node.left);}// 从二分搜索树中找最 大值(在整棵树的最右边)public T getMaxVal() {// 判断树是否为空if (this.root == null) {return null;}Node curNode = this.root;while (curNode.right != null) {curNode = curNode.right;}return curNode.val;}public T getMaxValDG() {// 判断树是否为空if (this.root == null) {return null;}return getMaxValDG(this.root).val;}private Node getMaxValDG(Node node) {//递归终止的条件if (node.right == null) {return node;}// 递归操作return getMinValDG(node.right);}// 从以this.root为根的二分搜索树中删除最小的结点public void removeMinNode() {if (this.root == null) {return;}this.root = removeMinNode(this.root);}/*** 从以node为根的二分搜索树中删除最小的节点** @param node 树的根节点* @return 删除之后的树的根节点*/private Node removeMinNode(Node node) {// 递归终止的条件if (node.left == null) {this.size--;return node.right;}// 递归操作node.left = removeMinNode(node.left);return node;}// 删除操作public void remove(T val) {if (!contains(val)) {return;}this.root = remove(this.root, val);}/*** 从以node为根的二分搜索树中删除元素val的节点** @param node 树的根节点* @param val  删除的值* @return*/private Node remove(Node node, T val) {// 递归终止的条件if (node == null) {return null;}if (node.val.compareTo(val) == 0) {// 更新sizethis.size--;if (node.right == null) {//1、右子树为空return node.left;} else if (node.left == null) {//2、左子树为空return node.right;} else {// 3、左右子树都不为空// 3-1 找到删除节点的后继Node suffixNode = getMinValDG(node.right);// 3-2 更新suffixNode的左右子树
//                suffixNode.right = removeMinNode(node.right);suffixNode.right = remove(node.right, getMinValDG(node.right).val);suffixNode.left = node.left;this.size++;// 3-3 返回suffixNodereturn suffixNode;}}// 递归操作if (node.val.compareTo(val) > 0) {node.left = remove(node.left, val);} else {node.right = remove(node.right, val);}return node;}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2806051.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

上班族如何选择待办事项时间管理APP

上班族如何选择待办事项时间管理APP&#xff1f;对于我们这些上班族来说&#xff0c;待办事项时间管理是一种非常重要的效率提升和成长的方式。作为一名追求进步的上班族&#xff0c;我总是想要在繁忙的工作之余&#xff0c;找到高效方法来提升工作效率。那么&#xff0c;上班族…

故障诊断 | 一文解决,PSO-BP粒子群算法优化BP神经网络模型的故障诊断(Matlab)

文章目录 效果一览文章概述模型描述源码设计参考资料效果一览 文章概述 故障诊断 | 一文解决,PSO-BP粒子群算法优化BP神经网络模型的故障诊断(Matlab) 粒子群优化算法(Particle Swarm Optimization, PSO)是一种群体智能优化算法,用于求解优化问题。BP神经网络是一种用于模…

【JavaEE】_smart tomcat常见问题

目录 1. 插件安装故障问题 2. 端口占用问题 3. 乱码问题 1. 插件安装故障问题 如果由于网络问题在IDEA中无法直接安装插件&#xff0c;可以去IDEA官网进行下载&#xff1a; 进入官网后点击Install安装&#xff0c;得到一个jar包&#xff1a; 把jar包拖拽到idea上即可自动安装…

ONLYOFFICE 桌面编辑器现已更新至v8.0啦

希望你开心&#xff0c;希望你健康&#xff0c;希望你幸福&#xff0c;希望你点赞&#xff01; 最后的最后&#xff0c;关注喵&#xff0c;关注喵&#xff0c;关注喵&#xff0c;佬佬会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的…

SQL-Labs靶场“46-50”关通关教程

君衍. 一、四十六关 ORDER BY数字型注入1、源码分析2、rand()盲注3、if语句盲注4、时间盲注5、报错注入6、Limit注入 二、四十七关 ORDER BY单引号报错注入1、源码分析2、报错注入3、时间盲注 三、四十八关 ODRER BY数字型盲注1、源码分析2、rand()盲注3、if语句盲注4、时间盲注…

300分钟吃透分布式缓存-13讲:如何完整学习MC协议及优化client访问?

协议分析 异常错误响应 接下来&#xff0c;我们来完整学习 Mc 协议。在学习 Mc 协议之前&#xff0c;首先来看看 Mc 处理协议指令&#xff0c;如果发现异常&#xff0c;如何进行异常错误响应的。Mc 在处理所有 client 端指令时&#xff0c;如果遇到错误&#xff0c;就会返回 …

杰发科技AC7801——SRAM 错误检测纠正

0.概述 7801暂时无错误注入&#xff0c;无法直接进中断看错误情况&#xff0c;具体效果后续看7840的带错误注入的测试情况。 1.简介 2.特性 3.功能 4.调试 可以看到在库文件里面有ecc_sram的库。 在官方GPIO代码里面写了点测试代码 成功打开2bit中断 因为没有错误注入&#x…

信息系统项目管理师(高项)—学习笔记

第一章信息化发展 1.1 信息与信息化 1.1.1 信息 信息是物质、能量及其属性的标示的集合&#xff0c;是确定性的增加。 它以物质介质为载体&#xff0c;在传递和反映世界各种事物存在方式、运动状态等的表征。 信息不是物质&#xff0c;也不是能力&#xff0c;它以一种普遍…

二 线性代数-向量

1、向量的表示方法&#xff1a; 其中的 i、j、k是坐标轴方向的单位向量。 2、向量的模&#xff1a; 用坐标计算的方法&#xff1a; 3、向量的运算&#xff1a; 3.1 向量的加法减法&#xff1a; 3.2 向量的数乘&#xff1a; 拉格朗日乘数法的 基础 公式。 3.3 向量的数量积&a…

抖音短视频提取器|视频内容批量提取软件

抖音短视频提取器是一款功能强大的工具&#xff0c;旨在解决用户获取抖音视频时需要逐个复制链接、下载的繁琐问题。我们希望用户能够通过简单的关键词搜索&#xff0c;实现自动批量抓取视频&#xff0c;并根据需要进行选择性批量下载。基于C#开发的这款工具不仅支持通过关键词…

outlook邮箱后缀怎么设置?邮箱后缀问题?

outlook邮箱后缀如何修改&#xff1f;微软有哪些后缀的邮箱&#xff1f; Outlook不仅提供了稳定的邮件收发服务&#xff0c;还允许用户根据个人喜好和需求自定义邮箱后缀。那么&#xff0c;Outlook邮箱后缀究竟该如何设置呢&#xff1f;下面&#xff0c;蜂邮EDM将一步步指导您…

Linux线程同步(2)死锁与互斥锁

死锁&#xff08;Deadlock&#xff09;是指两个或两个以上的进程&#xff08;或线程&#xff09;在执行过程中&#xff0c;由于竞争资源或者由于彼此通信而造成的一种阻塞的现象&#xff0c;若无外力作用&#xff0c;它们都将无法推进下去。此时称系统处于死锁状态或系统产生了…

嵌入式中数据结构二叉树详解与实现

树是数据结构中的重中之重&#xff0c;尤其以各类二叉树为学习的难点。在面试环节中&#xff0c;二叉树也是必考的模块。本文主要讲二叉树操作的相关知识&#xff0c;梳理面试常考的内容。请大家跟随小编一起来复习吧。 本篇针对面试中常见的二叉树操作作个总结&#xff1a; 前…

基于JAVA的二手车交易系统 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 二手车档案管理模块2.3 车辆预约管理模块2.4 车辆预定管理模块2.5 车辆留言板管理模块2.6 车辆资讯管理模块 三、系统设计3.1 E-R图设计3.2 可行性分析3.2.1 技术可行性分析3.2.2 操作可行性3.2.3 经济…

网络攻防之ARP欺骗和DNS劫持实验

目录 ARP单向欺骗 ARP双向欺骗 DNS劫持 实验环境&#xff1a; 攻击主机&#xff1a;kali2023虚拟机&#xff0c;IP地址为192.168.133.141 靶机&#xff1a;Windows10虚拟机&#xff0c;IP地址为192.168.133.129 网关地址&#xff1a;192.168.133.2 (1)ARP协议介绍 在以…

【踩坑】PyTorch中指定GPU不生效和GPU编号不一致问题

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 指定GPU不生效问题 解释&#xff1a;就是使用os.environ["CUDA_VISIBLE_DEVICES"] "1"后&#xff0c;后面使用起来仍然是cuda0. 解决&#xff1a;在最开头就使用 import os os.environ[&…

抖音视频抓取软件的优势|视频评论内容提取器|批量视频下载

抖音视频抓取软件在市场上的优势明显&#xff1a; 功能强大&#xff1a;我们的软件支持关键词搜索抓取和分享链接单一视频提取两种方式&#xff0c;满足用户不同的需求。同时&#xff0c;支持批量处理数据&#xff0c;提高用户获取视频的效率。 操作简单&#xff1a;我们的软件…

vue中使用echarts绘制双Y轴图表时,刻度没有对齐的两种解决方法

文章目录 1、原因2、思路3、解决方法3.1、使用alignTicks解决3.2、结合min和max属性去配置interval属性1、首先固定两边的分隔的段数。2、结合min和max属性去配置interval。 1、原因 刻度在显示时&#xff0c;分割段数不一样&#xff0c;导致左右的刻度线不一致&#xff0c;不…

知识积累(二):损失函数正则化与权重衰减

文章目录 1. 欧氏距离与L2范数1.1 常用的相似性度量 2. 什么是正则化&#xff1f;参考资料 本文只介绍 L2 正则化。 1. 欧氏距离与L2范数 欧氏距离也就是L2范数 1.1 常用的相似性度量 1&#xff09;点积 2&#xff09;余弦相似度 3&#xff09;L1和L2 2. 什么是正则化&…

部署Docker私有镜像仓库Harbor

Harbor介绍 Harbor 是为企业用户设计的开源镜像仓库项目&#xff0c;包括了权限管理(RBAC)、LDAP、审计、安全漏洞扫描、镜像验真、管理界面、自我注册、HA等企业必需的功能&#xff0c;同时针对中国用户的特点&#xff0c;设计镜像复制和中文支持等功能。 官网&#xff1a;h…