linux drm mipi dsi lcd 点屏之设备树配置

linux drm mipi dsi lcd 点屏之设备树配置

设备树文档:
https://elixir.bootlin.com/linux/v6.8-rc5/source/Documentation/devicetree/bindings/display/dsi-controller.yaml
https://elixir.bootlin.com/linux/v6.8-rc5/source/Documentation/devicetree/bindings/display/panel/display-timings.yaml
https://elixir.bootlin.com/linux/v6.8-rc5/source/Documentation/devicetree/bindings/display/panel/panel-timing.yaml

https://blog.csdn.net/lonely_fireworks/article/details/129362860
Android画面显示流程分析(1)–LCD时序

https://cloud.tencent.com/developer/article/1867373
Linux MIPI DSI LCD设备驱动开发调试细节学习笔记(一)

https://blog.csdn.net/qq_37858386/article/details/123705548
2022-03-24 RK3566 MIPI屏 调试记录,panel-init-sequence 命令格式介绍

驱动点屏:
1)屏幕pin引脚定义
2)panel-init-sequence初始化code
3)屏幕上电时序
4)display timing

显示接口有:HDMI,eDP/DP,MIPI DSI,RGB、BT1120/656,LVDS等等
在android 设备上用的比较多的是MIPI DSI。

不同的显示接口点屏,需要参考相应设备树文档进行配置。
下面以mipi dsi接口连接lcd点屏进行举例。

panel-timing.yaml内容:

在这里插入图片描述

hback-porch (HBP):行信号左边沿无效信号时间范围
hfront-porch (HFP): 行信号右边沿无效信号时间范围
hsync-len (HPW): 行信号电子枪回扫时间 即 水平同步时间 Hsyc
vback-porch(VBP) :帧信号上边沿无效信号时间范围
vfront-porch(VFP):帧信号下边沿无效信号时间范围
vsync-len(VPW):帧信号电子枪回扫时间 即垂直同步时间 Vsync
hactive(HVD):有效像素信号纵向分辨率
vactive(VVD):有效像素信号横向分辨率

如下LCD时序图参考文档:https://blog.csdn.net/lonely_fireworks/article/details/129362860 LCD时序
在这里插入图片描述

1,计算clock-frequency方法:
htotal: (一行数据)hsync水平同步信号需要的总的像素时钟周期个数
vtotal: (一列数据)vsync垂直同步s信号需要的总的像素时钟周期个数
hsync-len: hsync水平同步信号的低电平(非有效电平)持续的时间,即需要的像素时钟周期个数

clock-frequency: panel clock in Hz

htotal = (hback-porch + hactive + hfront-porch + hsync-len)
vtotal = (vback-porch + vactive + vfront-porch + vsync-len)

clock-frequency = htotal * vtotal * 刷新率

2,计算rockchip,lane-rate方法:
rockchip,lane-rate = htotal * vtotal * 刷新率 * 3(RGB) * 8(bit位) / dsi,lanes(lane数)/ 0.9
或者:
rockchip,lane-rate = htotal * vtotal * 刷新率 * 3(RGB) * 8(bit位) * 10 / dsi,lanes(lane数)/ 9

3(RGB):是每一个 pixel 有 RGB 3 个分量;
0.9:是考虑 mipi 时序的传输效率;

例子:
clock-frequency = <57153600>; // 计算:默认andoid手机屏幕fps = 60, (5 + 5 + 720 + 5) * (2 + 1 + 1280 + 13) * 60 = (735 * 1296) * 60 = 57153600

例子:
clock-frequency = <57153600>;  // 计算:默认andoid手机屏幕fps = 60,  (5 + 5 + 720 + 5) * (2 + 1 + 1280 + 13) * 60 = (735 * 1296) * 60 = 57153600
examples:- |dsi {#address-cells = <1>;#size-cells = <0>;panel@0 {compatible = "samsung,s6e8aa0";reg = <0>;vdd3-supply = <&vcclcd_reg>;vci-supply = <&vlcd_reg>;reset-gpios = <&gpy4 5 0>;power-on-delay= <50>;reset-delay = <100>;init-delay = <100>;panel-width-mm = <58>;panel-height-mm = <103>;flip-horizontal;flip-vertical;display-timings {timing0: timing-0 {clock-frequency = <57153600>;  // 默认andoid手机屏幕fps = 60,  (5 + 5 + 720 + 5) * (2 + 1 + 1280 + 13) * 60 = (735 * 1296) * 60 = 57153600hactive = <720>;vactive = <1280>;hfront-porch = <5>;hback-porch = <5>;hsync-len = <5>;vfront-porch = <13>;vback-porch = <1>;vsync-len = <2>;};};};};

如下内容参考文档:https://blog.csdn.net/LinuxArmbiggod/article/details/83277035 LCD点屏杂记
关于像素时钟和lane传输速率的计算
像素时钟:clock-frequency 即DCLK(dot clock), PCLK(pixel clock).
clock-frequency = (h_active + hfp + hbp + h_sync) * (v_active + vfp + vbp + v_sync) * fps
clock-frequency = 水平信号总周期垂直信号总周期帧率
fps为帧率,一般为60,表示每秒刷新60帧图像

lane传输速率:表示一条数据 lane 的传输速率,单位为 Mbits/s
lane_clk = 100 + H_total×V_total × fps × 3 × 8 / lanes_nums
total 这里指的是 水平 垂直信号总周期
fps 为帧率 取60
3 × 8 代表一个 RGB 为 3 个字节,每个字节 8 bit
lanes 代表 data 通道数

如:
rockchip,lane-rate = 100 + H_total×V_total × fps × 3 × 8 / lanes_nums / 0.9
0.9:是考虑mipi时序的传输效率

如下内容参考文档:http://www.nnewn.com/page226?article_id=281 Rockchip_Developer_Guide_DRM_Display_Driver_CN.pdf
带宽的计算方法
1)图像的带宽
以1080P ARGB格式的图像数据为例:
ARGB格式一个像素占用的内存大小:4 Byte
1080P ARGB格式的数据占用内存:1920 x 1080 x 4Byte/pixel = 8,100 Kbyte
如果按 60fps 刷新,占用的带宽是: 8,100 x 60fps = 474.6 Mbyte/s

2)显示接口的带宽
Bandwidth
MIPI DSI 驱动中会自动按如下公式根据不同的工作模式进行带宽的计算,当然在调试过程中也许对计算
的结果想做些微调可以通过 DTS dsi 节点下 rockchip,lane-rate 属性进行指定,单位可以是
Kbps/Mbps(D-PHY) 或 Ksps/Msps (C-PHY)

display-timings {native-mode = <&dsi0_timing0>;dsi0_timing0: timing0 {clock-frequency = <132000000>;hactive = <1920>;vactive = <1080>;hback-porch = <30>;hfront-porch = <15>;hsync-len = <2>;vback-porch = <15>;vfront-porch = <15>;vsync-len = <2>;hsync-active = <0>;vsync-active = <0>;de-active = <0>;pixelclk-active = <0>;};

hsync-active 行同步信号有效电平,0表示低电平有效,1表示高电平有效
vsync-active 帧同步信号有效电平,0表示低电平有效,1表示高电平有效

pixelclk-active:数据采样的方式
配置为1:上升沿驱动像素数据/下降沿采样数据
配置为0:下降沿驱动像素数据/上升沿采样数据

如panel-timing.yaml说明:
hsync-active:
description: |
Horizontal sync pulse.
0 selects active low, 1 selects active high.
If omitted then it is not used by the hardware

de-active:
description: |
Data enable.
0 selects active low, 1 selects active high.
If omitted then it is not used by the hardware

以上面设备树配置的时序为例,当前这个时序下,按 60 帧刷新需要的 dclk 是:131994240 hz,dts 实际按取整 132000000 hz 配
置:
htotal = hfp + hsync + hbp + hactive = 15 + 2 + 30 + 1080 = 1,127
vtotal = vfp + vsync + vbp + vactive = 15 + 2 + 15 + 1920 = 1,952
dclk = htotal x vtotal x fps = 1127 x 1952 x 60fps = 131,994,240

MIPI 接口上传输的频率是:
rockchip,lane-rate = 132M x 3(RGB) x 8(bpc) / 4(lane) / 0.9 = 880 Mbps

其中:
x3(RGB):是每一个 pixel 有 RGB 3 个分量;
x8(bpc):是每一个分量的位深是 8bit;
/4(lane):是这么多数据量在 4 lane 上传输,/4 是计算每 lane 的数据量;
/0.9:是考虑 mipi 时序的传输效率;

在这里插入图片描述

在这里插入图片描述

如下内容参考文档:https://blog.csdn.net/qq_37858386/article/details/123705548
2022-03-24 RK3566 MIPI屏 调试记录,panel-init-sequence 命令格式介绍

dts配置:

&dsi1 {status = "okay";rockchip,lane-rate = <xxxx>;panel@0 {compatible = "simple-panel-dsi";reg = <0>;backlight = <&backlight>;//power-supply=<&vcc_3v3>;enable-gpios = <&gpio0 RK_PC7 GPIO_ACTIVE_HIGH>;reset-gpios = <&gpio0 RK_PC5 GPIO_ACTIVE_LOW>;pinctrl-names = "default";pinctrl-0 = <&lcd_enable_gpio>, <&lcd_rst_gpio>;prepare-delay-ms = <120>;reset-delay-ms = <120>;init-delay-ms = <120>;stbyb-delay-ms = <120>;enable-delay-ms = <120>;disable-delay-ms = <120>;unprepare-delay-ms = <120>;width-mm = <229>;height-mm = <143>;dsi,flags = <(MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |MIPI_DSI_MODE_LPM | MIPI_DSI_MODE_EOT_PACKET)>;dsi,format = <MIPI_DSI_FMT_RGB888>;dsi,lanes = <8>;panel-init-sequence = [39 00 06 FF 77 01 00 00 1039 00 03 C0 E9 0339 00 03 C1 08 0239 00 03 C2 31 0815 00 02 CC 1039 00 11 B0 00 0B 10 0D 11 06 01 08 08 1D 04 10 10 27 30 1939 00 11 B1 00 0B 14 0C 11 05 03 08 08 20 04 13 10 28 30 1939 00 06 FF 77 01 00 00 1115 00 02 B0 3515 00 02 B1 3815 00 02 B2 0215 00 02 B3 8015 00 02 B5 4E15 00 02 B7 8515 00 02 B8 2015 00 02 B9 1015 00 02 C1 7815 00 02 C2 7815 64 02 D0 8839 00 04 E0 00 00 0239 00 0C E1 05 00 00 00 04 00 00 00 00 20 2039 00 0E E2 00 00 00 00 00 00 00 00 00 00 00 00 0039 00 05 E3 00 00 33 0039 00 03 E4 22 0039 00 11 E5 07 34 A0 A0 05 34 A0 A0 00 00 00 00 00 00 00 0039 00 05 E6 00 00 33 0039 00 03 E7 22 0039 00 11 E8 06 34 A0 A0 04 34 A0 A0 00 00 00 00 00 00 00 0039 00 08 EB 02 00 10 10 00 00 0039 00 03 EC 02 0039 00 11 ED AA 54 0B BF FF FF FF FF FF FF FF FF FB B0 45 AA39 00 06 FF 77 01 00 00 0015 00 02 36 0005 78 01 1105 14 01 29];panel-exit-sequence = [05 00 01 2805 00 01 10];display-timings {native-mode = <&timing0>;timing0: timing0 {clock-frequency = <27000000>;hactive = <480>;vactive = <854>;hfront-porch = <150>;hsync-len = <10>;hback-porch = <10>;vfront-porch = <14>;vsync-len = <4>;vback-porch = <6>;hsync-active = <1>;vsync-active = <1>;de-active = <0>;pixelclk-active = <1>;};};ports {#address-cells = <1>;#size-cells = <0>;port@0 {reg = <0>;panel_in_dsi: endpoint {remote-endpoint = <&dsi_out_panel>;};};};};ports {#address-cells = <1>;#size-cells = <0>;port@1 {reg = <1>;dsi_out_panel: endpoint {remote-endpoint = <&panel_in_dsi>;};};};};&dsi1_in_vp0 {status = "disabled";
};&dsi1_in_vp1 {status = "okay";
};

port配置参考文档:linux设备树:phandle和port

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2805028.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

C# OpenCvSharp 利用白平衡技术进行图像修复

目录 效果 灰度世界(GrayworldWB)-白平衡算法 完美反射(SimpleWB)-白平衡算法 基于学习的(LearningBasedWB)-白平衡算法 代码 下载 C# OpenCvSharp 利用白平衡技术进行图像修复 OpenCV xphoto模块中提供了三种不同的白平衡算法&#xff0c;分别是&#xff1a;灰度世界(G…

了解人工智能的13个细分领域

人工智能&#xff08;Artificial Intelligence&#xff0c;简称AI&#xff09;作为当今最热门和前沿的技术之一&#xff0c;已经在各种领域发挥着越来越重要的作用。随着人工智能技术的不断进步和应用&#xff0c;AI的细分领域也越来越多。目前&#xff0c;根据AI的应用领域和特…

Java向ES库中插入数据报错:I/O reactor status: STOPPED

Java向ES库中插入数据报错&#xff1a;java.lang.IllegalStateException: Request cannot be executed; I/O reactor status: STO 一、问题问题原因 二、解决思路 一、问题 在使用Java向ES库中插入数据时&#xff0c;第一次成功插入&#xff0c;第二次出现以下错误&#xff1a…

K8S—Pod详解

目录 一 Pod基础概念 1.1 Pod是什么 1.2 为什么要使用Pod&#xff1f;Pod在K8S集群中的使用方式&#xff1f; 1.3 基础容器pause 二 Pod的分类 2.1 自主式Pod和控制器管理的Pod 2.2 容器的分类 2.2.1 基础容器&#xff08;infrastructure container&#xff09; 2.2.2…

Linux解决cupy安装失败问题

1、遇到的问题&#xff1a; Failed to build cupy ERROR: Could not build wheels for cupy, which is required to install pyproject.toml-based projects 安装cupy的过程中一直报错&#xff0c;尝试了pip和conda的方法都没有解决。在百度查看了各种教程也没有很好的方法&…

正交匹配追踪(Orthogonal Matching Pursuit, OMP)的MATLAB实现

压缩感知&#xff08;Compressed Sensing, CS&#xff09;是一种利用稀疏信号的先验知识&#xff0c;用远少于奈奎斯特采样定理要求的样本数目恢复整个信号的技术。正交匹配追踪&#xff08;Orthogonal Matching Pursuit, OMP&#xff09;是一种常见的贪婪算法&#xff08;Gree…

自动化行业文件数据\资料防泄密软件——天锐绿盾|@德人合科技

天锐绿盾是一款自动化行业文件数据防泄密软件&#xff0c;由德人合科技提供。该软件采用动态加解密技术&#xff0c;能够有效防止公司内部数据泄密&#xff0c;同时支持各种文件格式加密&#xff0c;如CAD、OFFICE、PDF、图纸等。 PC端&#xff1a;https://isite.baidu.com/sit…

spring boot3登录开发-3(账密登录逻辑实现)

⛰️个人主页: 蒾酒 &#x1f525;系列专栏&#xff1a;《spring boot实战》 &#x1f30a;山高路远&#xff0c;行路漫漫&#xff0c;终有归途。 目录 前置条件 内容简介 用户登录逻辑实现 创建交互对象 1.创建用户登录DTO 2.创建用户登录VO 创建自定义登录业务异…

Python算法题集_图论(课程表)

Python算法题集_课程表 题207&#xff1a;课程表1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【循环递归全算】2) 改进版一【循环递归缓存】3) 改进版二【循环递归缓存反向计算】4) 改进版三【迭代剥离计数器检测】 4. 最优算法5. 相关资源 本…

基于Redis+IDEA+Mysql+Springboot+Vue开发的仓鼠外卖

基于RedisIDEAMysqlSpringbootVue开发的仓鼠外卖 项目介绍&#x1f481;&#x1f3fb; 前端Vue Axios npm install axios Vant2 npm i vantlatest-v2 -S 项目使用移动端页面展示 Element npm i element-ui -S 使用该技术来上传文件 用户功能 用户登录 用户注册(头像上传;手机,邮…

利用Socket.io实现实时通讯功能

在当今快节奏的社交和工作环境中&#xff0c;实时通讯已经变得至关重要。无论是在线游戏的即时交流&#xff0c;还是团队协作中的实时消息传递&#xff0c;都需要强大的实时通讯功能来支持。而在前端开发中&#xff0c;利用Socket.io这一强大的工具库&#xff0c;实现实时通讯功…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的动物识别系统(Python+PySide6界面+训练代码)

摘要&#xff1a;本博客文章深入解析了基于深度学习的动物识别系统的完整代码&#xff0c;并展示了采用领先的YOLOv8算法的实现代码。该系统与YOLOv7、YOLOv6、YOLOv5等早期版本的性能进行了比较&#xff0c;可以从静态图像到实时视频流的各种媒介中识别动物的高效性和准确性。…

老杨说运维 | 运维大数据价值探索

文末附有视频 伴随第六届双态IT乌镇用户大会的圆满完成&#xff0c;擎创科技“一体化数智管理和大模型应用”主题研讨会也正式落下了帷幕。 云原生转型正成为很多行业未来发展战略&#xff0c;伴随国家对信创数字化要求的深入推进&#xff0c;面对敏稳共存这一近年出现的新难…

psp游戏存档收集SAVEDATA

不想从头开始 ppsspp存档目录 pc&#xff1a;ppsspp解压目录\memstick\PSP\SAVEDATA 安卓&#xff1a;根目录\PSP\SAVEDATA 噬神者2(日版) NPJH50832099c645531020001000 風燐-https://wwl.lanzouq.com/iI1R01owozxa 咲夜-https://wwl.lanzouq.com/id1tX1owp2uf につてのぬ…

袁庭新ES系列10节 | 使⽤kibana对⽂档操作

前言 在前面的小节中&#xff0c;我们已经给大家介绍了Elasticsearch中文档的相关概念&#xff0c;想必有些同学都已经忘记了&#xff0c;那我们一块儿再来回顾下&#xff0c;文档即索引库中某个类型下的数据&#xff0c;会根据规则创建索引&#xff0c;将来用来搜索。可以类比…

宝塔面板安装了mysql5.7和phpMyadmin,但是访问phpMyadmin时提示502 Bad Gateway

操作流程截图如下&#xff1a; 原因是没有选择php版本 选择php版本 下一页找到phpMyAdmin&#xff0c;选择设置 目前只有纯净态&#xff0c;说明没有php环境&#xff0c;前去安装php环境 点击安装&#xff0c;选择版本&#xff0c;这里选择的是7.4版本&#xff0c;编译安…

Set集合(Java) 及底层原理

SET<E>是一个接口&#xff0c;添加的元素是无序的&#xff1a;添加数据的顺序和获取出的数据顺序不一致&#xff1b;不重复&#xff0c;无索引。 实现类&#xff1a; 1.HashSet&#xff1a;无序不重复无索引 2.LinkedHashSet&#xff1a;有序不重复无索引 3.TreeSet&…

六、回归与聚类算法 - 模型保存与加载

目录 1、API 2、案例 欠拟合与过拟合线性回归的改进 - 岭回归分类算法&#xff1a;逻辑回归模型保存与加载无监督学习&#xff1a;K-means算法 1、API 2、案例

算法题目中图和树的存储

邻接表的方式存储图和树 这就是邻接表&#xff0c;就是将每个结点的孩子结点用链表表示出来&#xff0c;再将所有结点以数组形式连起来。 存储树和图我们需要三个数组&#xff0c;h[N], e[N], ne[N],分别表示邻接表&#xff0c;结点值&#xff0c;结点的next值&#xff0c;h[i…

python3内置函数range()心得

python3内置函数range()心得 本文环境&#xff1a;Win 7 (64-bit) python 3.7.6 (32 bit) Thonny 3.2.6 概念 range()是python 3的内置函数&#xff08;Built-in Functions&#xff09;&#xff0c;它返回一个 range 对象的整数序列&#xff0c;可以设定这个序列的起点、终…