K8S—Pod详解

目录

一 Pod基础概念

1.1 Pod是什么

1.2 为什么要使用Pod?Pod在K8S集群中的使用方式?

1.3 基础容器pause

二 Pod的分类

2.1 自主式Pod和控制器管理的Pod

2.2 容器的分类

2.2.1 基础容器(infrastructure container)

2.2.2 初始化容器(initcontainers)

2.2.3 应用容器(Maincontainer)

2.3 Pod容器案例

三 镜像拉取策略

3.1 IfNotPresent

3.2 Always

3.3 Never

3.4 示例

 四 重启策略

4.1 Always

4.2 OnFailure

4.3 Never

 4.4 示例

五 Pod如何进行资源限制

5.1 最常见的可设定资源—CPU

5.2 最常见的可设定资源—内存

5.3 示例

六 探针

6.1 探针的三种规则

6.2 Probe支持的三种检查方法

6.3 示例

6.3.1 exec方式

6.3.2  httpGet方式

 6.3.3 tcpSocket方式

6.3.4  就绪检测

七 Pod的生命周期 

7.1 pod的生命周期

7.2 数据流向


一 Pod基础概念

1.1 Pod是什么

Pod是kubernetes中最小的资源管理组件,Pod也是最小化运行容器化应用的资源对象。一个Pod代表着集群中运行的一个进程。kubernetes中其他大多数组件都是围绕着Pod来进行支撑和扩展Pod功能的,例如,用于管理Pod运行的StatefulSet和Deployment等控制器对象,用于暴露Pod应用的Service和Ingress对象,为Pod提供存储的PersistentVolume存储资源对象等。

1.2 为什么要使用Pod?Pod在K8S集群中的使用方式?

现代容器技术建议一个容器只运行一个进程,该进程在容器中PID命令空间中的进程号为1,可直接接收并处理信号,进程终止时容器生命周期也就结束了。若想在容器内运行多个进程,需要有一个类似Linux操作系统init进程的管控类进程,以树状结构完成多进程的生命周期管理。运行于各自容器内的进程无法直接完成网络通信,这是由于容器间的隔离机制导致,k8s中的Pod资源抽象正是解决此类问题:

  • 多容器协同:有时候多个容器需要共享资源、网络空间等,这时候就可以将它们放在同一个 Pod 中,方便它们之间的协同工作。

  • 生命周期管理:Pod 提供了统一的生命周期,当 Pod 中的所有容器都终止时,Pod 进程也将终止。这种生命周期的一致性有助于简化应用程序的管理。

  • 共享网络:Pod 内的容器共享相同的网络命名空间,它们可以通过 localhost 直接通信,无需额外的配置。

Pod在K8S集群中有两种使用方式:

  • 一个Pod中运行一个容器(最常见的用法):一个Pod下的容器必须运行于同一节点上。
  • 在一个Pod中同时运行多个容器:一个Pod中也可以同时封装几个需要紧密耦合互相协作的容器,它们之间共享资源。这些在同一个Pod中的容器可以互相协作成为一个service单位,比如一个容器共享文件,另一个“sidecar”容器来更新这些文件,Pod将这些容器的存储资源作为一个实体来管理。

1.3 基础容器pause

Pod资源中针对各容器提供网络命令空间等共享机制的是底层基础容器pause。

基础容器(也可称为父容器)pause为了管理Pod容器间的共享操作,需要能够准确地知道如何去创建共享运行环境的容器,还能管理这些容器的生命周期。

pause容器有两个核心的功能:

首先,它作为Pod中所有其他容器共享的基础容器,提供了整个Pod的Linux命名空间。这意味着所有其他容器将与"pause"容器共享网络和存储等资源。

其次,"pause"容器在每个Pod中充当PID为1的init进程,并负责管理该Pod中的所有其他容器的进程。它会启用PID命名空间,并处理僵尸进程的回收。这确保了在Pod中的各个容器正常启动和停止,并提供了更好的进程隔离。

pause容器使得Pod中的所有容器可以共享两种资源:

  • 网络:每个Pod都会被分配一个唯一的IP地址。Pod中的所有容器共享网络空间,包括IP地址和端口。Pod内部的容器可以使用localhost互相通信。Pod中的容器与外界通信时,必须分配共享网络资源(例如使用宿主机的端口映射)。
  • 存储:Pod可以指定多个共享的Volume。Pod中的所有容器都可以访问共享的Volume。Volume也可以用来持久化Pod中的存储资源,以防容器重启后文件丢失。

每个Pod都有一个特殊的被称为“基础容器”的Pause容器。Pause容器对应的镜像属于Kubernetes平台的一部分,除了Pause容器,每个Pod还包含一个或者多个紧密相关的用户应用容器。


二 Pod的分类

2.1 自主式Pod和控制器管理的Pod

  • 自主式Pod :通过手动创建 Pod 资源对象,将应用程序实例直接部署到 Kubernetes 集群中。这种方式不太灵活,因为 Pod 是直接部署到节点上的,一旦 Pod 所在的节点发生故障或者 Pod 本身出现问题,就需要手动介入来修复问题,这种Pod本身是不能自我修复的。
  • 控制器管理的Pod:通过 Kubernetes 中的 Controller 抽象层来管理的,可以提供副本管理、滚动升级和集群级别的自愈能力。Controller 能够自动地管理多个 Pod 实例,对节点故障进行自动调度,并具有自我修复的能力。

2.2 容器的分类

2.2.1 基础容器(infrastructure container)

基础容器提供了 Kubernetes 集群所需的基础设施服务,比如网络、存储、监控等。它们通常不直接参与应用程序的运行,而是为整个集群提供支持和服务。

①负责维护整个 Pod 网络和存储空间;

②node 节点中操作;

③启动一个Pod时,k8s会自动启动一个基础容器。

2.2.2 初始化容器(initcontainers)

初始化容器用于在主应用容器启动之前执行特定的初始化任务,例如加载配置、初始化数据库等。它们可以确保在主应用容器启动之前完成必要的准备工作,使得应用容器能够顺利启动和运行。

Init 容器与普通的容器非常像,除了以下两点:
●Init 容器总是运行到成功完成为止。

●每个 Init 容器都必须在下一个 Init 容器启动之前成功完成启动和退出。如果 Pod 的 Init 容器失败,K8S不断地重启该 Pod,直到 Init 容器成功为止。然而,如果 Pod 对应的重启策略(restartPolicy)为 Never,它不会重新启动。

Init 的容器作用:
因为init容器具有与应用容器分离的单独镜像,其启动相关代码具有如下优势:
●Init 容器可以包含一些安装过程中应用容器中不存在的实用工具或个性化代码。例如,没有必要仅为了在安装过程中使用类似 sed、 awk、 python 或 dig 这样的工具而去FROM 一个镜像来生成一个新的镜像。

●Init 容器可以安全地运行这些工具,避免这些工具导致应用镜像的安全性降低。

●应用镜像的创建者和部署者可以各自独立工作,而没有必要联合构建一个单独的应用镜像。

●Init 容器能以不同于Pod内应用容器的文件系统视图运行。因此,Init容器可具有访问 Secrets 的权限,而应用容器不能够访问。

●由于 Init 容器必须在应用容器启动之前运行完成,因此 Init 容器提供了一种机制来阻塞或延迟应用容器的启动,
直到满足了一组先决条件。一旦前置条件满足,Pod内的所有的应用容器会并行启动。

2.2.3 应用容器(Maincontainer)

应用容器是 Kubernetes Pod 中运行实际应用程序的容器,如 Web 服务器、后端服务、数据库等。它们是构成应用程序的核心组件,负责提供实际的业务功能。

2.3 Pod容器案例

kubectl describe pod myapp-pod

#查看容器日志内容

#创建一个名为myservice的 Service 并查看 K8S集群中的 Pod 和 Service 的状态。

vim myservice.yamlapiVersion: v1
kind: Service
metadata:name: myservice
spec:ports:- protocol: TCPport: 80targetPort: 9376kubectl create -f myservice.yaml

#获取当前 K8S 集群中所有 Service 的状态和信息。

 #获取 K8S 集群中所有运行在kube-system命名空间下的 Pod 的状态和信息和获取集群中所有 Pod 的状态和信息

vim mydb.yamlapiVersion: v1
kind: Service
metadata:name: mydb
spec:ports:- protocol: TCPport: 80targetPort: 9377kubectl create -f mydb.yamlkubectl get pods

注意: 

●在Pod启动过程中,Init容器会按顺序在网络和数据卷初始化之后启动。每个容器必须在下一个容器启动之前成功退出。
●如果由于运行时或失败退出,将导致容器启动失败,它会根据Pod的restartPolicy指定的策略进行重试。然而,如果Pod的restartPolicy设置为Always,Init容器失败时会使用RestartPolicy策略。
●在所有的Init容器没有成功之前,Pod将不会变成Ready状态。Init容器的端口将不会在Service中进行聚集。正在初始化中的Pod处于Pending状态,但应该会将Initializing状态设置为true。
●如果Pod重启,所有Init容器必须重新执行。
●对Init容器spec的修改被限制在容器image字段,修改其他字段都不会生效。更改Init容器的image字段,等价于重启该Pod。
●Init容器具有应用容器的所有字段。除了readinessProbe,因为Init容器无法定义不同于完成(completion)的就绪(readiness)之外的其他状态。这会在验证过程中强制执行。
●在Pod中的每个app和Init容器的名称必须唯一;与任何其它容器共享同一个名称,会在验证时抛出错误。


三 镜像拉取策略

镜像拉取策略是指在创建或更新容器时,决定是否从镜像仓库中拉取新的镜像。在 K8S 中,有三种常见的镜像拉取策略可以选择。

3.1 IfNotPresent

如果本地没有该镜像,则从镜像仓库中拉取镜像。如果本地已经存在该镜像,则直接使用本地镜像,不再拉取新的镜像。默认的镜像拉取策略。

3.2 Always

每次都从镜像仓库中拉取最新的镜像。无论本地是否已经存在该镜像,都会强制拉取最新的镜像。

3.3 Never

从不拉取镜像。只使用本地存在的镜像。如果本地不存在该镜像,则容器将无法启动。

注意:对于标签为“:latest”的镜像文件,其默认的镜像获取策略即为“Always”;而对于其他标签的镜像,其默认策略则为“IfNotPresent”。

nginx:latest

3.4 示例

#master01 上操作

kubectl edit deployment/nginx-deployment

# 创建测试案例

mkdir /opt/demo
cd /opt/demovim pod1.yamlapiVersion: v1
kind: Pod
metadata:name: pod-test1
spec:containers:- name: nginximage: nginximagePullPolicy: Alwayscommand: [ "echo", "SUCCESS" ]kubectl create -f pod1.yaml

#此时 Pod 的状态异常,原因是 echo 执行完进程终止,容器生命周期也就结束了  

 #可以发现 Pod 中的容器在生命周期结束后,由于 Pod 的重启策略为 Always,容器再次重启了,并且又重新开始拉取镜像。 

#修改 pod1.yaml 文件

cd /opt/demo
vim pod1.yaml
apiVersion: v1
kind: Pod
metadata:name: pod-test1
spec:containers:- name: nginximage: nginx:1.14							#修改 nginx 镜像版本imagePullPolicy: Always#command: [ "echo", "SUCCESS" ]			#删除

 #删除原有的资源

kubectl delete -f pod1.yaml 

#更新资源

kubectl apply -f pod1.yaml 

# 查看 Pod 状态

#在任意 node 节点上使用 curl 查看头部信息


 四 重启策略

重启策略是指在容器发生故障或终止时,Kubernetes 控制器将采取的措施。以下是三种常见的重启策略。

4.1 Always

默认策略,无论何时容器终止,Kubernetes 都会自动重启该容器。

确保容器始终处于运行状态,即使容器终止也会自动重启,适用于需要保持长时间运行的应用程序。

4.2 OnFailure

当容器异常退出(退出状态码非0)时,重启容器;正常退出则不重启容器。

4.3 Never

Kubernetes 不会自动重启容器,即使容器终止。

适用于一次性任务或者不希望容器终止后自动重启的场景,确保容器终止后不会重新启动。

这些重启策略可以在 Pod 的配置文件中通过spec.restartPolicy字段来指定。例如,你可以在 Pod 的配置中添加如下字段来设置重启策略:

spec:restartPolicy: Always

 4.4 示例

vim pod3.yamlapiVersion: v1
kind: Pod
metadata:name: foo
spec:containers:- name: busyboximage: busyboxargs:- /bin/sh- -c- sleep 30; exit 3kubectl apply -f pod3.yaml

#查看Pod状态,等容器启动后30秒后执行exit退出进程进入error状态,就会重启次数加1

kubectl delete -f pod3.yamlvim pod3.yamlapiVersion: v1
kind: Pod
metadata:name: foo
spec:containers:- name: busyboximage: busyboxargs:- /bin/sh- -c- sleep 30; exit 3restartPolicy: Neverkubectl apply -f pod3.yaml

 #容器进入error状态不会进行重启


五 Pod如何进行资源限制

当定义 Pod 时可以选择性地为每个容器设定所需要的资源数量。 最常见的可设定资源是 CPU 和内存大小,以及其他类型的资源。

当为 Pod 中的容器指定了 request 资源时,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用。

如果 Pod 运行所在的节点具有足够的可用资源,容器可以使用超出所设置的 request 资源量。不过,容器不可以使用超出所设置的 limit 资源量。

如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。

Pod 和 容器 的资源请求和限制:
spec.containers[].resources.requests.cpu        #定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.memory        #定义创建容器时预分配的内存资源
spec.containers[].resources.limits.cpu            #定义 cpu 的资源上限 
spec.containers[].resources.limits.memory        #定义内存的资源上限

5.1 最常见的可设定资源—CPU

在 Kubernetes 中,CPU 资源的 request limit 都以 CPU 核心(Core)或者毫核(MilliCore)为单位。一个 CPU 核心或者毫核在 Kubernetes 中通常被定义为等同于一个虚拟 CPU(vCPU),也可以理解为一个超线程。

因此,在 Kubernetes 中,一个 CPU 的定义相当于一个 vCPU 或一个超线程的计算能力。当你在 Pod 的配置中设置 CPU 资源时,可以使用整数值表示整个 CPU 核心,也可以使用小数或者毫核值来表示部分 CPU 核心的计算能力。

如果你在 Pod 的配置中设置了如下 CPU 请求和限制:

resources:requests:cpu: 0.5limits:cpu: 1

这个配置表示该容器请求了半个 CPU 核心的计算资源,并且限制了最大使用量为一个 CPU 核心。

 注意:Kubernetes 不允许设置精度小于 1m 的 CPU 资源。 

5.2 最常见的可设定资源—内存

内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示。

如:1KB=10^3=1000,1MB=10^6=1000000=1000KB,1GB=10^9=1000000000=1000MB
1KiB=2^10=1024,1MiB=2^20=1048576=1024KiB

5.3 示例

vim pod2.yamlapiVersion: v1
kind: Pod
metadata:name: frontend
spec:containers:- name: webimage: nginxenv:- name: WEB_ROOT_PASSWORDvalue: "password"resources:requests:memory: "64Mi"cpu: "250m"limits:memory: "128Mi"cpu: "500m"- name: dbimage: mysqlenv:- name: MYSQL_ROOT_PASSWORDvalue: "abc123"resources:requests:memory: "512Mi"cpu: "500m"limits:memory: "1Gi"cpu: "1"kubectl apply -f pod2.yaml
kubectl describe pod frontend

 kubectl get pods -o wide

 kubectl describe nodes node01


六 探针

探针是由kubelet对容器执行的定期诊断。

6.1 探针的三种规则

livenessProbe判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针,则默认状态为Success。

readinessProbe判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service 址endpoints 中剔除删除该Pod的IP地。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。

startupProbe(这个1.17版本增加的):判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,在则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。
注意:以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。

6.2 Probe支持的三种检查方法

exec :在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。

tcpSocket :对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。

httpGet :对指定的端口和路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的。

每次探测都将获得以下三种结果之一:
●成功:容器通过了诊断。
●失败:容器未通过诊断。
●未知:诊断失败,因此不会采取任何行动。

6.3 示例

6.3.1 exec方式

apiVersion: v1
kind: Pod
metadata:labels:test: livenessname: liveness-exec
spec:containers:- name: livenessimage: k8s.gcr.io/busyboxargs:  - /bin/sh- -c- touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 60livenessProbe:exec:command:- cat- /tmp/healthyfailureThreshold: 1 initialDelaySeconds: 5periodSeconds: 5
  • initialDelaySeconds:指定 kubelet 在执行第一次探测前应该等待5秒,即第一次探测是在容器启动后的第6秒才开始执行。默认是 0 秒,最小值是 0。
  • periodSeconds:指定了 kubelet 应该每 5 秒执行一次存活探测。默认是 10 秒。最小值是 1。
  • failureThreshold: 当探测失败时,Kubernetes 将在放弃之前重试的次数。 存活探测情况下的放弃就意味着重新启动容器。就绪探测情况下的放弃 Pod 会被打上未就绪的标签。默认值是 3。最小值是 1。
  • timeoutSeconds:探测的超时后等待多少秒。默认值是 1 秒。最小值是 1。(在 Kubernetes 1.20 版本之前,exec 探针会忽略 timeoutSeconds 探针会无限期地 持续运行,甚至可能超过所配置的限期,直到返回结果为止。)

可以看到 Pod 中只有一个容器。kubelet 在执行第一次探测前需要等待 5 秒,kubelet 会每 5 秒执行一次存活探测。kubelet 在容器内执行命令 cat /tmp/healthy 来进行探测。如果命令执行成功并且返回值为 0,kubelet 就会认为这个容器是健康存活的。 当到达第 31 秒时,这个命令返回非 0 值,kubelet 会杀死这个容器并重新启动它。

vim exec.yamlapiVersion: v1
kind: Pod
metadata:name: liveness-execnamespace: default
spec:containers:- name: liveness-exec-containerimage: busyboximagePullPolicy: IfNotPresentcommand: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]livenessProbe:exec:command: ["test","-e","/tmp/live"]initialDelaySeconds: 1periodSeconds: 3kubectl create -f exec.yaml

 kubectl get pods -w

6.3.2  httpGet方式

apiVersion: v1
kind: Pod
metadata:labels:test: livenessname: liveness-http
spec:containers:- name: livenessimage: k8s.gcr.io/livenessargs:- /serverlivenessProbe:httpGet:path: /healthzport: 8080httpHeaders:- name: Custom-Headervalue: AwesomeinitialDelaySeconds: 3periodSeconds: 3

在这个配置文件中,可以看到 Pod 也只有一个容器。initialDelaySeconds 字段告诉 kubelet 在执行第一次探测前应该等待 3 秒。periodSeconds 字段指定了 kubelet 每隔 3 秒执行一次存活探测。kubelet 会向容器内运行的服务(服务会监听 8080 端口)发送一个 HTTP GET 请求来执行探测。如果服务器上 /healthz 路径下的处理程序返回成功代码,则 kubelet 认为容器是健康存活的。如果处理程序返回失败代码,则 kubelet 会杀死这个容器并且重新启动它。

任何大于或等于 200 并且小于 400 的返回代码标示成功,其它返回代码都标示失败。

vim httpget.yamlapiVersion: v1
kind: Pod
metadata:name: liveness-httpgetnamespace: default
spec:containers:- name: liveness-httpget-containerimage: soscscs/myapp:v1imagePullPolicy: IfNotPresentports:- name: httpcontainerPort: 80livenessProbe:httpGet:port: httppath: /index.htmlinitialDelaySeconds: 1periodSeconds: 3timeoutSeconds: 10kubectl create -f httpget.yaml
kubectl create -f httpget.yamlkubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.html

 6.3.3 tcpSocket方式

apiVersion: v1
kind: Pod
metadata:name: goproxylabels:app: goproxy
spec:containers:- name: goproxyimage: k8s.gcr.io/goproxy:0.1ports:- containerPort: 8080readinessProbe:tcpSocket:port: 8080initialDelaySeconds: 5periodSeconds: 10livenessProbe:tcpSocket:port: 8080initialDelaySeconds: 15periodSeconds: 20

 这个例子同时使用 readinessProbe 和 livenessProbe 探测。kubelet 会在容器启动 5 秒后发送第一个 readinessProbe 探测。这会尝试连接 goproxy 容器的 8080 端口。如果探测成功,kubelet 将继续每隔 10 秒运行一次检测。除了 readinessProbe 探测,这个配置包括了一个 livenessProbe 探测。kubelet 会在容器启动 15 秒后进行第一次 livenessProbe 探测。就像 readinessProbe 探测一样,会尝试连接 goproxy 容器的 8080 端口。如果 livenessProbe 探测失败,这个容器会被重新启动。

vim tcpsocket.yamlapiVersion: v1
kind: Pod
metadata:name: probe-tcp
spec:containers:- name: nginximage: soscscs/myapp:v1livenessProbe:initialDelaySeconds: 5timeoutSeconds: 1tcpSocket:port: 8080periodSeconds: 10failureThreshold: 2kubectl create -f tcpsocket.yaml

kubectl get pods -w
NAME        READY   STATUS    RESTARTS   AGE
probe-tcp   1/1     Running             0          1s
probe-tcp   1/1     Running             1          25s       #第一次是 init(5秒) + period(10秒) * 2
probe-tcp   1/1     Running             2          45s       #第二次是 period(10秒) + period(10秒)  重试了两次
probe-tcp   1/1     Running             3          65s

6.3.4  就绪检测

vim readiness-httpget.yamlapiVersion: v1
kind: Pod
metadata:name: readiness-httpgetnamespace: default
spec:containers:- name: readiness-httpget-containerimage: soscscs/myapp:v1imagePullPolicy: IfNotPresentports:- name: httpcontainerPort: 80readinessProbe:httpGet:port: 80path: /index1.htmlinitialDelaySeconds: 1periodSeconds: 3livenessProbe:httpGet:port: httppath: /index.htmlinitialDelaySeconds: 1periodSeconds: 3timeoutSeconds: 10kubectl create -f readiness-httpget.yaml

#readiness探测失败,无法进入READY状态

kubectl get pods 
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   0/1     Running   0          20s

 kubectl get pods 

kubectl get pods -w
NAME                READY   STATUS    RESTARTS   AGE
readiness-httpget   1/1     Running   0          4m10s
readiness-httpget   0/1     Running   1          4m15s

七 Pod的生命周期 

7.1 pod的生命周期

 

  • Pause(父容器):主要作用是为了管理所有组件的生命周期。它负责启动和终止整个容器组。

  • Init(初始化容器):Init 容器用于提供应用容器所需的依赖环境。它会在应用容器启动之前运行,并且应用容器需要等待所有的初始化容器启动完成且退出后才会启动。

  • Main(应用容器):Main 容器是应用程序的主要运行容器。它在初始化容器运行完成后才开始运行,负责整个应用程序的启动。

  • Startup(启动探针):启动探针用于检测应用容器是否已经启动完成。它会判断应用容器是否已经准备好接收外部请求。

  • Readiness(就绪探针):用于判断应用容器是否已经准备好接收对外的分发请求。如果就绪探针检测失败,通常会导致容器被标记为不可用,并触发重启策略,但不会直接杀死应用容器。此外,若应用容器持续无法通过就绪探针检测,则系统可能会将该容器从服务端点中移除,以确保不会向其发送流量。

  • Liveness(存活探针):存活探针用于检测应用容器是否仍然在正常运行。如果存活探针失败,则会认为应用容器不可用,并触发重启策略。

7.2 数据流向

  • 发送指令进行容器初始化。
  • 初始化容器(Init)逐个启动,直到所有初始化容器成功启动。
  • 启动探针(Startup)检测应用容器是否已经启动完成。
  • 应用容器(Main)并行启动。
  • 就绪探针(Readiness)检测应用容器是否准备好接收请求。
  • 存活探针(Liveness)检测应用容器是否正常运行。
  • 如果需要关闭容器,则启动停止指令(Stop)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2805022.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Linux解决cupy安装失败问题

1、遇到的问题: Failed to build cupy ERROR: Could not build wheels for cupy, which is required to install pyproject.toml-based projects 安装cupy的过程中一直报错,尝试了pip和conda的方法都没有解决。在百度查看了各种教程也没有很好的方法&…

正交匹配追踪(Orthogonal Matching Pursuit, OMP)的MATLAB实现

压缩感知(Compressed Sensing, CS)是一种利用稀疏信号的先验知识,用远少于奈奎斯特采样定理要求的样本数目恢复整个信号的技术。正交匹配追踪(Orthogonal Matching Pursuit, OMP)是一种常见的贪婪算法(Gree…

自动化行业文件数据\资料防泄密软件——天锐绿盾|@德人合科技

天锐绿盾是一款自动化行业文件数据防泄密软件,由德人合科技提供。该软件采用动态加解密技术,能够有效防止公司内部数据泄密,同时支持各种文件格式加密,如CAD、OFFICE、PDF、图纸等。 PC端:https://isite.baidu.com/sit…

spring boot3登录开发-3(账密登录逻辑实现)

⛰️个人主页: 蒾酒 🔥系列专栏:《spring boot实战》 🌊山高路远,行路漫漫,终有归途。 目录 前置条件 内容简介 用户登录逻辑实现 创建交互对象 1.创建用户登录DTO 2.创建用户登录VO 创建自定义登录业务异…

Python算法题集_图论(课程表)

Python算法题集_课程表 题207:课程表1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【循环递归全算】2) 改进版一【循环递归缓存】3) 改进版二【循环递归缓存反向计算】4) 改进版三【迭代剥离计数器检测】 4. 最优算法5. 相关资源 本…

基于Redis+IDEA+Mysql+Springboot+Vue开发的仓鼠外卖

基于RedisIDEAMysqlSpringbootVue开发的仓鼠外卖 项目介绍💁🏻 前端Vue Axios npm install axios Vant2 npm i vantlatest-v2 -S 项目使用移动端页面展示 Element npm i element-ui -S 使用该技术来上传文件 用户功能 用户登录 用户注册(头像上传;手机,邮…

利用Socket.io实现实时通讯功能

在当今快节奏的社交和工作环境中,实时通讯已经变得至关重要。无论是在线游戏的即时交流,还是团队协作中的实时消息传递,都需要强大的实时通讯功能来支持。而在前端开发中,利用Socket.io这一强大的工具库,实现实时通讯功…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的动物识别系统(Python+PySide6界面+训练代码)

摘要:本博客文章深入解析了基于深度学习的动物识别系统的完整代码,并展示了采用领先的YOLOv8算法的实现代码。该系统与YOLOv7、YOLOv6、YOLOv5等早期版本的性能进行了比较,可以从静态图像到实时视频流的各种媒介中识别动物的高效性和准确性。…

老杨说运维 | 运维大数据价值探索

文末附有视频 伴随第六届双态IT乌镇用户大会的圆满完成,擎创科技“一体化数智管理和大模型应用”主题研讨会也正式落下了帷幕。 云原生转型正成为很多行业未来发展战略,伴随国家对信创数字化要求的深入推进,面对敏稳共存这一近年出现的新难…

psp游戏存档收集SAVEDATA

不想从头开始 ppsspp存档目录 pc:ppsspp解压目录\memstick\PSP\SAVEDATA 安卓:根目录\PSP\SAVEDATA 噬神者2(日版) NPJH50832099c645531020001000 風燐-https://wwl.lanzouq.com/iI1R01owozxa 咲夜-https://wwl.lanzouq.com/id1tX1owp2uf につてのぬ…

袁庭新ES系列10节 | 使⽤kibana对⽂档操作

前言 在前面的小节中,我们已经给大家介绍了Elasticsearch中文档的相关概念,想必有些同学都已经忘记了,那我们一块儿再来回顾下,文档即索引库中某个类型下的数据,会根据规则创建索引,将来用来搜索。可以类比…

宝塔面板安装了mysql5.7和phpMyadmin,但是访问phpMyadmin时提示502 Bad Gateway

操作流程截图如下: 原因是没有选择php版本 选择php版本 下一页找到phpMyAdmin,选择设置 目前只有纯净态,说明没有php环境,前去安装php环境 点击安装,选择版本,这里选择的是7.4版本,编译安…

Set集合(Java) 及底层原理

SET<E>是一个接口&#xff0c;添加的元素是无序的&#xff1a;添加数据的顺序和获取出的数据顺序不一致&#xff1b;不重复&#xff0c;无索引。 实现类&#xff1a; 1.HashSet&#xff1a;无序不重复无索引 2.LinkedHashSet&#xff1a;有序不重复无索引 3.TreeSet&…

六、回归与聚类算法 - 模型保存与加载

目录 1、API 2、案例 欠拟合与过拟合线性回归的改进 - 岭回归分类算法&#xff1a;逻辑回归模型保存与加载无监督学习&#xff1a;K-means算法 1、API 2、案例

算法题目中图和树的存储

邻接表的方式存储图和树 这就是邻接表&#xff0c;就是将每个结点的孩子结点用链表表示出来&#xff0c;再将所有结点以数组形式连起来。 存储树和图我们需要三个数组&#xff0c;h[N], e[N], ne[N],分别表示邻接表&#xff0c;结点值&#xff0c;结点的next值&#xff0c;h[i…

python3内置函数range()心得

python3内置函数range()心得 本文环境&#xff1a;Win 7 (64-bit) python 3.7.6 (32 bit) Thonny 3.2.6 概念 range()是python 3的内置函数&#xff08;Built-in Functions&#xff09;&#xff0c;它返回一个 range 对象的整数序列&#xff0c;可以设定这个序列的起点、终…

Google开源工具类库Guava介绍

Guava 是由 Google 开发和维护的一组开源的 Java 库&#xff0c;它提供了许多 Google 内部 Java 项目依赖的核心库。Guava 库包含了大量用于集合、缓存、支持原语操作、并发库、通用注解、字符串处理、I/O 等等的实用工具类和增强功能。使用 Guava 可以帮助开发者写出更加简洁、…

互联设备-中继器-路由器等

网卡的主要作用 1 在发送方 把从计算机系统要发送的数据转换成能在网线上传输的bit 流 。 2 在接收方 把从网线上接收来的 bit 流重组成计算机系统可以 处理的数据 。 3 判断数据是否是发给自己的 4 发送和控制计算机系统和网线数据流 计算机的分类 1、台式机 2、小型机和服…

多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型

多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型 目录 多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型预测效果基本介绍程序设计参考资料 预测效果 基本介绍…

【vue】provide/inject

provide/ inject这对选项需要一起使用&#xff0c;以允许一个祖先组件向其所有子孙后代注入一个依赖&#xff0c;不论组件层次有多深&#xff0c;并在起上下游关系成立的时间里始终生效。 通途点来讲可以用来实现隔代传值&#xff0c;传统的props只能父传子&#xff0c;而 prov…