【MySQL系列 04】深入浅出索引

一、索引介绍

提到数据库索引,相信大家都不陌生,在日常工作中会经常接触到。比如某一个 SQL 查询比较慢,分析完原因之后,你可能就会说“给某个字段加个索引吧”之类的解决方案。

但到底什么是索引,索引又是如何工作的呢?今天我们就来聊聊这个话题。

一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。一本 500 页的书,如果你想快速找到其中的某一个知识点,在不借助目录的情况下,那我估计你可得找一会儿。同样,对于数据库的表而言,索引其实就是它的“目录”。

二、索引的常见模型

实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。用于提高读写效率的数据结构很多,这里先介绍三种常见、也比较简单的数据结构,它们分别是 哈希表有序数组 和 搜索树

哈希表

哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的键即 key,就可以找到其对应的值即 value,这个时间复杂度是 O(1)。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。

不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

假设,你现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:

图中,User2 和 User4 根据身份证号算出来的值都是 N,但没关系,后面还跟了一个链表。假设,这时候你要查 ID_card_n2 对应的名字是什么,处理步骤就是:首先,将 ID_card_n2 通过哈希函数算出 N;然后,按顺序遍历,找到 User2。

需要注意的是,图中四个 ID_card_n 的值并不是递增的,这样做的好处是增加新的 User 时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的

你可以设想下,如果你现在要找身份证号在[ID_card_X, ID_card_Y]这个区间的所有用户,就必须全部扫描一遍了。

所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。

有序数组

有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:

这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查 ID_card_n2 对应的名字,用二分法就可以快速得到,这个时间复杂度是 O(log(N))。

同时很显然,这个索引结构支持范围查询。你要查身份证号在[ID_card_X, ID_card_Y]区间的 User,可以先用二分法找到 ID_card_X(如果不存在 ID_card_X,就找到大于 ID_card_X 的第一个 User),然后向右遍历,直到查到第一个大于 ID_card_Y 的身份证号,退出循环。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如你要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据。

二叉搜索树

二叉搜索树也是课本里的经典数据结构了。还是上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:

二叉搜索树的特点是:父节点左子树所有结点的值小于父节点的值,右子树所有结点的值大于父节点的值。这样如果你要查 ID_card_n2 的话,按照图中的搜索顺序就是按照 UserA -> UserC -> UserF -> User2 这个路径得到。这个时间复杂度是 O(log(N))。

当然为了维持 O(log(N)) 的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))。

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

你可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,这个查询可真够慢的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。

以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

N 叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

不管是哈希还是有序数组,或者 N 叉树,它们都是不断迭代、不断优化的产物或者解决方案。数据库技术发展到今天,跳表LSM 树 等数据结构也被用于引擎设计中,这里我就不再一一展开了。你心里要有个概念,数据库底层存储的核心就是基于这些数据模型的。每碰到一个新数据库,我们需要先关注它的数据模型,这样才能从理论上分析出这个数据库的适用场景。

在 MySQL 中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。

三、InnoDB 的索引模型

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为 索引组织表。InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。

每一个索引在 InnoDB 里面对应一棵 B+ 树。

假设,我们有一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引。这个表的建表语句是:

mysql> create table T(
id int primary key, 
k int not null, 
name varchar(16),
index (k))engine=InnoDB;

表中 R1~R5 的 (ID,k) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6),两棵树的示例示意图如下(InnoDB 的索引组织结构示意图)。

从图中不难看出,根据叶子节点的内容,索引类型分为 主键索引 和 非主键索引

主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为 聚簇索引(clustered index)

非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为 二级索引(secondary index)

基于主键索引和普通索引的查询有什么区别?

  • 如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
  • 如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为 回表

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

注:select ID from T where k=5,不会触发 回表,因为非主键索引的叶子结点存储了数据的主键ID。

四、索引维护

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行 ID 值为 700,则只需要在 R5 的记录后面插入一个新记录。如果新插入的 ID 值为 400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为 页分裂 。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。

当然有分裂就有 合并 。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

基于上面的索引维护过程说明,我们来讨论一个案例:

你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT

插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值。

也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?

由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择

五、覆盖索引

我们先来看一下这个问题:

在下面这个表 T 中,如果我执行 select * from T where k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行?

mysql> create table T (
ID int primary key,
k int NOT NULL DEFAULT 0, 
s varchar(16) NOT NULL DEFAULT '',
index k(k))
engine=InnoDB;insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');

我们一起来看看这条 SQL 查询语句的执行流程:

  • 在 k 索引树上找到 k=3 的记录,取得 ID = 300;
  • 再到 ID 索引树查到 ID=300 对应的 R3;
  • 在 k 索引树取下一个值 k=5,取得 ID=500;
  • 再回到 ID 索引树查到 ID=500 对应的 R4;
  • 在 k 索引树取下一个值 k=6,不满足条件,循环结束。

在这个过程中,回到主键索引树搜索的过程,我们称为回表。可以看到,这个查询过程读了 k 索引树的 3 条记录(步骤 1、3 和 5),回表了两次(步骤 2 和 4)。

在这个例子中,由于查询结果所需要的数据只在主键索引上有,所以不得不回表。那么,有没有可能经过索引优化,避免回表过程呢?

答案是有。如果执行的语句是 select ID from T where k between 3 and 5,这时只需要查 ID 的值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引 k 已经“覆盖了”我们的查询需求,我们称为 覆盖索引

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

需要注意的是,在引擎内部使用覆盖索引在索引 k 上其实读了三个记录,R3~R5(对应的索引 k 上的记录项),但是对于 MySQL 的 Server 层来说,它就是找引擎拿到了两条记录,因此 MySQL 认为扫描行数是 2。关于如何查看扫描行数的问题,后面的文章再详细讨论。

基于上面覆盖索引的说明,我们来讨论一个问题:在一个市民信息表上,是否有必要将身份证号和名字建立联合索引?

假设这个市民表的定义是这样的:

CREATE TABLE `tuser` (`id` int(11) NOT NULL,`id_card` varchar(32) DEFAULT NULL,`name` varchar(32) DEFAULT NULL,`age` int(11) DEFAULT NULL,`ismale` tinyint(1) DEFAULT NULL,PRIMARY KEY (`id`),KEY `id_card` (`id_card`),KEY `name_age` (`name`,`age`)
) ENGINE=InnoDB

我们知道,身份证号是市民的唯一标识。也就是说,如果有根据身份证号查询市民信息的需求,我们只要在身份证号字段上建立索引就够了。而再建立一个(身份证号、姓名)的联合索引,是不是浪费空间?

如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。

当然,索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这正是业务 DBA,或者称为业务数据架构师的工作。

六、最左前缀原则

如果为每一种查询都设计一个索引,索引是不是太多了。如果我现在要按照市民的身份证号去查他的家庭地址呢?虽然这个查询需求在业务中出现的概率不高,但总不能让它走全表扫描吧?反过来说,单独为一个不频繁的请求创建一个(身份证号,地址)的索引又感觉有点浪费。应该怎么做呢?

先说结论吧。B+ 树这种索引结构,可以利用索引的“最左前缀”,来定位记录。

为了直观地说明这个概念,我们用(name,age)这个联合索引来分析。

可以看到,索引项是按照索引定义里面出现的字段顺序排序的。

当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到 ID4,然后向后遍历得到所有需要的结果。

如果你要查的是所有名字第一个字是“张”的人,你的 SQL 语句的条件是"where name like ‘张 %’"。这时,你也能够用上这个索引,查找到第一个符合条件的记录是 ID3,然后向后遍历,直到不满足条件为止。

可以看到,不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左 N 个字段,也可以是字符串索引的最左 M 个字符。

基于上面对最左前缀索引的说明,我们来讨论一个问题:在建立联合索引的时候,如何安排索引内的字段顺序。

这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了 (a,b) 这个联合索引后,一般就不需要单独在 a 上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。

所以现在你知道了,这段开头的问题里,我们要为高频请求创建 (身份证号,姓名)这个联合索引,并用这个索引支持“根据身份证号查询地址”的需求。

那么,如果既有联合查询,又有基于 a、b 各自的查询呢?查询条件里面只有 b 的语句,是无法使用 (a,b) 这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护 (a,b)、(b) 这两个索引。

这时候,我们要考虑的原则就是空间了。比如上面这个市民表的情况,name 字段是比 age 字段大的 ,那我就建议你创建一个(name,age) 的联合索引和一个 (age) 的单字段索引。

七、索引下推

最左前缀可以用于在索引中定位记录。这时,你可能要问,那些不符合最左前缀的部分,会怎么样呢?

我们还是以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是 10 岁的所有男孩”。那么,SQL 语句是这么写的:

mysql> select * from tuser where name like '张%' and age=10 and ismale=1;

 你已经知道了前缀索引规则,所以这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录 ID3。当然,这还不错,总比全表扫描要好。

然后呢?当然是判断其他条件是否满足。

在 MySQL 5.6 之前,只能从 ID3 开始一个个回表。到主键索引上找出数据行,再对比字段值。

而 MySQL 5.6 引入的 索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

下面是这两个过程的执行流程图。

图 1 - 无索引下推执行流程

图 2 - 索引下推执行流程

这两个图里面,每一个虚线箭头表示回表一次。

图 1 中,在 (name,age) 索引里面我特意去掉了 age 的值,这个过程 InnoDB 并不会去看 age 的值,只是按顺序把“name 第一个字是’张’”的记录一条条取出来回表。因此,需要回表 4 次。

图 2 跟图 1 的区别是,InnoDB 在 (name,age) 索引内部就判断了 age 是否等于 10,对于不等于 10 的记录,直接判断并跳过。在我们的这个例子中,只需要对 ID4、ID5 这两条记录回表取数据判断,就只需要回表 2 次。

八、索引类型总结

按照数据结构维度划分:

  • BTree 索引:MySQL 里默认和最常用的索引类型。只有叶子节点存储 value,非叶子节点只有指针和 key。存储引擎 MyISAM 和 InnoDB 实现 BTree 索引都是使用 B+Tree,但二者实现方式不一样(前面已经介绍了)。
  • 哈希索引:类似键值对的形式,一次即可定位。
  • RTree 索引:一般不会使用,仅支持 geometry 数据类型,优势在于范围查找,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
  • 全文索引:对文本的内容进行分词,进行搜索。目前只有 CHARVARCHARTEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。

按照底层存储方式角度划分:

  • 聚簇索引(聚集索引):索引结构和数据一起存放的索引,InnoDB 中的主键索引就属于聚簇索引。
  • 非聚簇索引(非聚集索引):索引结构和数据分开存放的索引,二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。

按照应用维度划分:

  • 主键索引:加速查询 + 列值唯一(不可以有 NULL)+ 表中只有一个。
  • 普通索引:仅加速查询。
  • 唯一索引:加速查询 + 列值唯一(可以有 NULL)。
  • 覆盖索引:一个索引包含(或者说覆盖)所有需要查询的字段的值。
  • 联合索引:多列值组成一个索引,专门用于组合搜索,其效率大于索引合并。
  • 全文索引:对文本的内容进行分词,进行搜索。目前只有 CHARVARCHARTEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。

MySQL 8.x 中实现的索引新特性:

  • 隐藏索引:也称为不可见索引,不会被优化器使用,但是仍然需要维护,通常会软删除和灰度发布的场景中使用。主键不能设置为隐藏(包括显式设置或隐式设置)。
  • 降序索引:之前的版本就支持通过 desc 来指定索引为降序,但实际上创建的仍然是常规的升序索引。直到 MySQL 8.x 版本才开始真正支持降序索引。另外,在 MySQL 8.x 版本中,不再对 GROUP BY 语句进行隐式排序。
  • 函数索引:从 MySQL 8.0.13 版本开始支持在索引中使用函数或者表达式的值,也就是在索引中可以包含函数或者表达式。

九、小结

我跟你分析了数据库引擎可用的数据结构,介绍了 InnoDB 采用的 B+ 树结构,以及为什么 InnoDB 要这么选择。B+ 树能够很好地配合磁盘的读写特性,减少单次查询的磁盘访问次数。同时介绍了数据库索引的概念,包括了覆盖索引前缀索引索引下推,最后对索引类型进行了总结。

可以看到,在满足语句需求的情况下, 尽量少地访问资源是数据库设计的重要原则之一。我们在使用数据库的时候,尤其是在设计表结构时,也要以减少资源消耗作为目标。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2804840.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Stable Diffusion 模型分享:A-Zovya RPG Artist Tools(RPG 大师工具箱)

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八 下载地址 模型介绍 A-Zovya RPG Artist Tools 模型是一个针对 RPG 训练的一个模型,可以生成一些 R…

sql注入 [极客大挑战 2019]FinalSQL1

打开题目 点击1到5号的结果 1号 2号 3号 4号 5号 这里直接令传入的id6 传入id1^1^1 逻辑符号|会被检测到,而&感觉成了注释符,&之后的内容都被替换掉了。 传入id1|1 直接盲注比较慢,还需要利用二分法来编写脚本 这里利用到大佬的脚…

如何使用ChatGPT创建一份优质简历

目录 第一步:明确目标和重点 第二步:与ChatGPT建立对话 第三步:整理生成的内容 第四步:注重行文风格 第五步:强调成就和量化结果 第六步:个性化和定制 第七步:反复修改和完善 总结 在现…

国家建筑装配式内装产业基地在沪成立,副主任单位优积科技协同助推绿色低碳循环发展

上海市室内装饰行业协会装配式内装产业专业委员会成立大会暨“国家建筑装配式内装产业基地”项目启动会于3月21日下午1点在上海光大酒店隆重举行。出席此次活动的包括市装协会长徐国俭,市装协党支部书记兼秘书长丛国梁,市装协装配式内装委主任顾泰昌&…

【人脸朝向识别与分类预测】基于LVQ神经网络

课题名称:基于LVQ神经网络的人脸朝向识别分类 版本日期:2024-02-20 运行方式:直接运行GRNN0503.m文件 代码获取方式:私信博主或 企鹅号:491052175 模型描述: 采集到一组人脸朝向不同角度时的图像,图像…

python 基础知识点(蓝桥杯python科目个人复习计划49)

今日复习内容:做复习题 例题1:希尔排序 题目描述: 希尔排序是直接插入排序算法的一种更高效的改进版本,但它是非稳定排序算法。希尔排序是基于插入排序的以下两点性质而提出的改进方法之一: 1.插入排序在对几乎已经…

代码随想录算法训练营第四十天|343. 整数拆分 96.不同的二叉搜索树

343. 整数拆分 链接:. - 力扣(LeetCode) 思路: 动态规划的题目虽然说是要先确定dp数组的含义,再确定递归公式,但是总感觉这两者是相辅相成的,是一起出来的,但是到此,dp数组…

kubernetes负载均衡部署

目录 1.新master节点的搭建 对master02进行初始化配置(192.168.88.31) 将master01的配置移植到master02 修改master02配置文件 2.负载均衡的部署 两台负载均衡器配置nginx 部署keepalived服务 所有node节点操作 总结 实验准备: k8s…

开源大语言模型作为 LangChain 智能体

概要 开源大型语言模型 (LLMs) 现已达到一种性能水平,使它们适合作为推动智能体工作流的推理引擎: Mixtral 甚至在我们的基准测试中 超过了 GPT-3.5,并且通过微调,其性能可以轻易的得到进一步增强。 引言 针对 因果语言建模 训练的大型语言模…

QEMU之CPU虚拟化

概述 KVM是由以色列初创公司Qumranet在CPU推出硬件虚拟化之后开发的一个基于内核的虚拟机监控器。 KVM是一个虚拟化的统称方案,除了x86外,ARM等其他架构也有自己的方案,所以KVM的主体代码位于内核树virt/kvm目录下面,表示所有CP…

9、使用 ChatGPT 的 GPT 制作自己的 GPT!

使用 ChatGPT 的 GPT 制作自己的 GPT! 想用自己的 GPT 超越 GPT ChatGPT 吗?那么让我们 GPT GPT 吧! 山姆 奥特曼利用这个机会在推特上宣传 GPTs 的同时还猛烈抨击了埃隆的格罗克。 GPTs概览 他们来了! 在上周刚刚宣布之后,OpenAI 现在推出了其雄心勃勃的新 ChatGPT…

<网络安全>《49 网络攻防专业课<第十三课 - 华为防火墙的使用(2)>

6 防火墙的防范技术 6.1 ARP攻击防范 攻击介绍 攻击者通过发送大量伪造的ARP请求、应答报文攻击网络设备,主要有ARP缓冲区溢出攻击和ARP拒绝服务攻击两种。 ARP Flood攻击(ARP扫描攻击):攻击者利用工具扫描本网段或者跨网段主机时…

eureka 简介和基本使用

Eureka 是Netflix开发的服务发现框架,是Spring Cloud微服务架构中的一部分。它主要用于微服务架构中的服务注册与发现。Eureka由两部分组成:Eureka Server 和 Eureka Client。获取更详细的信息可以访问官网,如下图: Eureka Server…

【vue】如何打开别人编译后的vue项目

文件结构如下,编译后的文件放在dist中。 dist的文件结构大约如下,文件名称随项目 1.新建app.js文件 const express require(express);const app express();const port 8080;app.use(express.static(dist));app.listen(port, () > console.log); …

【软件测试】定位前后端bug总结+Web/APP测试分析

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、Web测试中简单…

Vue监听器(上)之组合式watch

1. 定义监听器 //要监视的属性被改变时触发 watch(要监视的属性, (更改后的心值, 更改前的旧值) > {具体操作}, );//监视对象为getter的时候 //表达式内任意响应式属性被改变时触发 watch(() > return表达式, (表达式的新值, 表达式的旧值) > {具体操作} );//数组中任…

Redis篇之Redis持久化的实现

持久化即把数据保存到可以永久保存的存储设备当中(磁盘)。因为Redis是基于内存存储数据的,一旦redis实例当即数据将会全部丢失,所以需要有某些机制将内存中的数据持久化到磁盘以备发生宕机时能够进行恢复,这一过程就称…

Unity之PUN2插件实现多人联机射击游戏

目录 📖一、准备工作 📺二、UI界面处理 📱2.1 登录UI并连接PUN2服务器 📱2.2 游戏大厅界面UI 📱2.3 创建房间UI 📱2.4 进入房间UI 📱2.5 玩家准备状态 📱2.6 加载战斗场景…

【深度学习】微调通义千问模型:LoRA 方法,微调Qwen1.8B教程,实践

官网资料: https://github.com/QwenLM/Qwen/blob/main/README_CN.md 文章目录 准备数据运行微调设置网络代理启动容器执行 LoRA 微调修改 finetune/finetune_lora_single_gpu.sh运行微调 执行推理 在本篇博客中,我们将介绍如何使用 LoRA 方法微调通义千问模型&#…

Docker Container(容器)

"在哪里走散,你都会找到我~" Docker 容器 什么是容器? 通俗来讲,容器是镜像运行的实体。我们对于镜像的认知是,“存储在磁盘上的只读文件”。当我们启动一个容器的本质,就是启动一个进程,即容器…