操作系统--调度算法

 


一、进程调度算法(CPU调度算法)

什么时候会发生 CPU 调度呢?通常有以下四种情况:

  • 「抢占式调度」:进程正在运行的时,可以被打断,使其把 CPU 让给其他进程。那抢占的原则一般有三种,分别是时间片原则、优先权原则、短作业优先原则
  1. 当进程从运行状态转到等待状态;
  2. 当进程从运行状态转到终止状态;
  • 「非抢占式调度」:当进程正在运行时,它就会一直运行,直到该进程完成或发生某个事件而被阻塞时,才会把 CPU 让给其他进程
  1. 当进程从运行状态转到就绪状态
  2. 当进程从等待状态转到就绪状态

1.先来先服务调度算法 FCFS

先来后到,每次从就绪队列选择最先进入队列的进程,然后一直运行,直到进程退出或被阻塞,才会继续从队列中选择第一个进程接着运行。

FCFS 对长作业有利,适用于 CPU 繁忙型作业的系统,而不适用于 I/O 繁忙型作业的系统。

2.最短作业优先调度算法 SJF

优先选择运行时间最短的进程来运行,这有助于提高系统的吞吐量。

对长作业不利,很容易造成一种极端现象。

3.高响应比优先调度算法 HRRN

权衡了短作业和长作业。

每次进行进程调度时,先计算「响应比优先级」,然后把「响应比优先级」最高的进程投入运行,「响应比优先级」的计算公式:

从上面的公式,可以发现:

  • 如果两个进程的「等待时间」相同时,「要求的服务时间」越短,「响应比」就越高,这样短作业的进程容易被选中运行;
  • 如果两个进程「要求的服务时间」相同时,「等待时间」越长,「响应比」就越高,这就兼顾到了长作业进程,因为进程的响应比可以随时间等待的增加而提高,当其等待时间足够长时,其响应比便可以升到很高,从而获得运行的机会;

4.时间片轮转调度算法 RR

最古老、最简单、最公平且使用最广的算法。

每个进程被分配一个时间段,称为时间片(Quantum),即允许该进程在该时间段中运行。

  • 如果时间片用完,进程还在运行,那么将会把此进程从 CPU 释放出来,并把 CPU 分配另外一个进程;
  • 如果该进程在时间片结束前阻塞或结束,则 CPU 立即进行切换;

另外,时间片的长度就是一个很关键的点:

  • 如果时间片设得太短会导致过多的进程上下文切换,降低了 CPU 效率;
  • 如果设得太长又可能引起对短作业进程的响应时间变长。

通常时间片设为 20ms~50ms 通常是一个比较合理的折中值。

5.最高优先级调度算法 HPF

对于多用户计算机系统就有不同的看法了,它们希望调度是有优先级的,即希望调度程序能从就绪队列中选择最高优先级的进程进行运行。

进程的优先级可以分为,静态优先级或动态优先级:

  • 静态优先级:创建进程时候,就已经确定了优先级了,然后整个运行时间优先级都不会变化;
  • 动态优先级:根据进程的动态变化调整优先级,比如如果进程运行时间增加,则降低其优先级,如果进程等待时间(就绪队列的等待时间)增加,则升高其优先级,也就是随着时间的推移增加等待进程的优先级

该算法也有两种处理优先级高的方法,非抢占式和抢占式:

  • 非抢占式:当就绪队列中出现优先级高的进程,运行完当前进程,再选择优先级高的进程。
  • 抢占式:当就绪队列中出现优先级高的进程,当前进程挂起,调度优先级高的进程运行。

但是依然有缺点,可能会导致低优先级的进程永远不会运行。

6.多级反馈队列调度算法 MFQ

是「时间片轮转算法」和「最高优先级算法」的综合和发展。

  • 「多级」表示有多个队列,每个队列优先级从高到低,同时优先级越高时间片越短。
  • 「反馈」表示如果有新的进程加入优先级高的队列时,立刻停止当前正在运行的进程,转而去运行优先级高的队列;

对于短作业可能可以在第一级队列很快被处理完。对于长作业,如果在第一级队列处理不完,可以移入下次队列等待被执行,虽然等待的时间变长了,但是运行时间也会更长了,所以该算法很好的兼顾了长短作业,同时有较好的响应时间。


二、内存页面置换算法

1.缺页异常(缺页中断)

当 CPU 访问的页面不在物理内存时,便会产生一个缺页中断,请求操作系统将所缺页调入到物理内存。那它与一般中断的主要区别在于:

  • 缺页中断在指令执行「期间」产生和处理中断信号,而一般中断在一条指令执行「完成」后检查和处理中断信号。
  • 缺页中断返回到该指令的开始重新执行「该指令」,而一般中断返回回到该指令的「下一个指令」执行。

第 4 步是能在物理内存找到空闲页的情况,那如果找不到呢?

        找不到空闲页的话,就说明此时内存已满了,这时候,就需要「页面置换算法」选择一个物理页,如果该物理页有被修改过(脏页),则把它换出到磁盘,然后把该被置换出去的页表项的状态改成「无效的」,最后把正在访问的页面装入到这个物理页中。

所以,页面置换算法的功能是,当出现缺页异常,需调入新页面而内存已满时,选择被置换的物理页面,也就是说选择一个物理页面换出到磁盘,然后把需要访问的页面换入到物理页。

那其算法目标则是,尽可能减少页面的换入换出的次数

2.页表项

  • 状态位:用于表示该页是否有效,也就是说是否在物理内存中,供程序访问时参考。
  • 访问字段:用于记录该页在一段时间被访问的次数,供页面置换算法选择出页面时参考。
  • 修改位:表示该页在调入内存后是否有被修改过,由于内存中的每一页都在磁盘上保留一份副本,因此,如果没有修改,在置换该页时就不需要将该页写回到磁盘上,以减少系统的开销;如果已经被修改,则将该页重写到磁盘上,以保证磁盘中所保留的始终是最新的副本。
  • 硬盘地址:用于指出该页在硬盘上的地址,通常是物理块号,供调入该页时使用。

3.最佳页面置换算法 OPT

置换在「未来」最长时间不访问的页面。该算法实现需要计算内存中每个逻辑页面的「下一次」访问时间,然后比较,选择未来最长时间不访问的页面。

实际系统中无法实现,因为程序访问页面时是动态的,我们是无法预知每个页面在「下一次」访问前的等待时间。所以,最佳页面置换算法作用是为了衡量你的算法的效率,你的算法效率越接近该算法的效率,那么说明你的算法是高效的。

4.先进先出置换算法 FIFO

选择在内存驻留时间很长的页面进行中置换

5.最近最久未使用的置换算法 LRU

发生缺页时,选择最长时间没有被访问的页面进行置换,也就是说,该算法假设已经很久没有使用的页面很有可能在未来较长的一段时间内仍然不会被使用。

这种算法近似最优置换算法,最优置换算法是通过「未来」的使用情况来推测要淘汰的页面,而 LRU 则是通过「历史」的使用情况来推测要淘汰的页面。

虽然 LRU 在理论上是可以实现的,但代价很高。为了完全实现 LRU,需要在内存中维护一个所有页面的链表,最近最多使用的页面在表头,最近最少使用的页面在表尾。

困难的是,在每次访问内存时都必须要更新「整个链表」。在链表中找到一个页面,删除它,然后把它移动到表头是一个非常费时的操作。

所以,LRU 虽然看上去不错,但是由于开销比较大,实际应用中比较少使用。

6.时钟页面置换算法

把所有的页面都保存在一个类似钟面的「环形链表」中,一个表针指向最老的页面。

当发生缺页中断时,算法首先检查表针指向的页面:

  • 如果它的访问位位是 0 就淘汰该页面,并把新的页面插入这个位置,然后把表针前移一个位置;
  • 如果访问位是 1 就清除访问位,并把表针前移一个位置,重复这个过程直到找到了一个访问位为 0 的页面为止;

7.最不常用算法 LFU

当发生缺页中断时,选择「访问次数」最少的那个页面,并将其淘汰

它的实现方式是,对每个页面设置一个「访问计数器」,每当一个页面被访问时,该页面的访问计数器就累加 1。在发生缺页中断时,淘汰计数器值最小的那个页面。

要增加一个计数器来实现,这个硬件成本是比较高的,另外如果要对这个计数器查找哪个页面访问次数最小,查找链表本身,如果链表长度很大,是非常耗时的,效率不高。

但还有个问题,LFU 算法只考虑了频率问题,没考虑时间的问题,比如有些页面在过去时间里访问的频率很高,但是现在已经没有访问了,而当前频繁访问的页面由于没有这些页面访问的次数高,在发生缺页中断时,就会可能会误伤当前刚开始频繁访问,但访问次数还不高的页面。

那这个问题的解决的办法还是有的,可以定期减少访问的次数,比如当发生时间中断时,把过去时间访问的页面的访问次数除以 2,也就说,随着时间的流失,以前的高访问次数的页面会慢慢减少,相当于加大了被置换的概率。


三、磁盘调度算法

磁盘调度算法的目的很简单,就是为了提高磁盘的访问性能,一般是通过优化磁盘的访问请求顺序来做到的。

寻道的时间是磁盘访问最耗时的部分,如果请求顺序优化的得当,必然可以节省一些不必要的寻道时间,从而提高磁盘的访问性能。

1.先来先服务算法 FCFS

先到来的请求,先被服务。

这种算法,比较简单粗暴,但是如果大量进程竞争使用磁盘,请求访问的磁道可能会很分散,那先来先服务算法在性能上就会显得很差,因为寻道时间过长。

2.最短时间寻道优先 SSF

优先选择从当前磁头位置所需寻道时间最短的请求。

这个算法可能存在某些请求的饥饿,因为本次例子我们是静态的序列,看不出问题,假设是一个动态的请求,如果后续来的请求都是小于 183 磁道的,那么 183 磁道可能永远不会被响应,于是就产生了饥饿现象,这里产生饥饿的原因是磁头在一小块区域来回移动

3.扫描算法(电梯算法)

最短寻道时间优先算法会产生饥饿的原因在于:磁头有可能再一个小区域内来回得移动。

为了防止这个问题,可以规定:磁头在一个方向上移动,访问所有未完成的请求,直到磁头到达该方向上的最后的磁道,才调换方向,这就是扫描(Scan)算法

扫描调度算法性能较好,不会产生饥饿现象,但是存在这样的问题,中间部分的磁道会比较占便宜,中间部分相比其他部分响应的频率会比较多,也就是说每个磁道的响应频率存在差异。

4.循环扫描算法 CSCAN

循环扫描规定:只有磁头朝某个特定方向移动时,才处理磁道访问请求,而返回时直接快速移动至最靠边缘的磁道,也就是复位磁头,这个过程是很快的,并且返回中途不处理任何请求,该算法的特点,就是磁道只响应一个方向上的请求。

循环扫描算法相比于扫描算法,对于各个位置磁道响应频率相对比较平均。

5.LOOK 与 C-LOOK算法

扫描算法和循环扫描算法,都是磁头移动到磁盘「最始端或最末端」才开始调换方向。优化的思路就是磁头在移动到「最远的请求」位置,然后立即反向移动

针对 SCAN 算法的优化则叫 LOOK 算法,它的工作方式,磁头在每个方向上仅仅移动到最远的请求位置,然后立即反向移动,而不需要移动到磁盘的最始端或最末端,反向移动的途中会响应请求

针对 C-SCAN 算法的优化则叫 C-LOOK,它的工作方式,磁头在每个方向上仅仅移动到最远的请求位置,然后立即反向移动,而不需要移动到磁盘的最始端或最末端,反向移动的途中不会响应请求


四、参考

小林 coding

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2803761.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

测试用例设计方法:招式组合,因果判定出世

1 引言 上篇讲了等价类划分和边界值分析法,而这两种方法只考虑了单个的输入条件,并未考虑输入条件的各种组合、输入条件之间的相互制约关系的场景。基于此短板,因果图法和判定表法应运而生。 2 因果图法 2.1 概念及原理 2.1.1 定义 一种…

BLEU: a Method for Automatic Evaluation of Machine Translation

文章目录 BLEU: a Method for Automatic Evaluation of Machine Translation背景和意义技术原理考虑 n n n - gram中 n 1 n1 n1 的情况考虑 n n n - gram中 n > 1 n\gt 1 n>1 的情况考虑在文本中的评估初步实验评估和结论统一不同 n n n 值下的评估数值考虑句子长度…

一文了解L7812CV的引脚图介绍、参数解读

L7812CV简介 L7812CV是一款具有稳压功能的正向型线性稳压器,能够将输入电压稳定输出为12V的直流电压。它适用于各种需要12V电源的电子设备、电路和系统。 引脚图介绍 L7812CV有三个引脚,分别为输入引脚(输入电压Vin)、地引脚&…

什么是智慧公厕?智慧公厕跟传统公共厕所的区别

智慧公厕是近年来新兴起的一种公共设施,通过物联网技术的应用,实现了公厕的全面感知、全时监测、全方位精细化管理。与传统的公共厕所相比,智慧公厕在许多方面带来了翻天覆地的变化。本文以智慧公厕源头厂家广州中期科技有限公司,…

【2024.02.22】定时执行专家 V7.0 发布 - TimingExecutor V7.0 Release - 龙年春节重大更新版本

目录 ▉ 新版本 V7.0 下载地址 ▉ V7.0 新功能 ▼2024-02-21 V7.0 - 更新日志▼ ▉ V7.0 新UI设计 ▉ 新版本 V7.0 下载地址 BoomWorks软件的最新版本-CSDN博客文章浏览阅读10w次,点赞9次,收藏41次。▉定时执行专家—毫秒精度、专业级的定时任务执行…

【计算机网络】一些乱七八糟内容

MAC Media Access Control 用于在局域网(LAN)或广域网(WAN)中实现设备自动接入网络 "载波侦听多路访问"(Carrier Sense Multiple Access) CSMA/CD 是CSMA的升级版本,加入了序列号检测机制。 CSMA/CA 是CSM…

最优传输(Optimal Transport)

最优传输(Optimal Transport)是一种数学理论和计算方法,用于描述两个概率分布之间的距离或者对应关系。它的核心概念是如何以最佳方式将一组资源(如质量、能量等)从一个位置传输到另一个位置。 基本概念: …

金和OA UploadFileBlock接口任意文件上传漏洞

声明 本文仅用于技术交流,请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,文章作者不为此承担任何责任 1. 产品简介 金和数字化智能办公平台(简称JC6)是…

Shopee平台玩具类目选品策略大揭秘

在Shopee平台上经营玩具类目,对于卖家来说,选品是至关重要的一环。只有通过精准的选品策略,才能在激烈的市场竞争中脱颖而出,提高产品的曝光度和销售业绩。以下是一些有效的选品策略,帮助卖家在Shopee平台上成功经营玩…

springboot210基于Springboot开发的精简博客系统的设计与实现

基于Springboot开发的精简博客系统的设计与实现 摘要 当下,正处于信息化的时代,许多行业顺应时代的变化,结合使用计算机技术向数字化、信息化建设迈进。以前企业对于博客信息的管理和控制,采用人工登记的方式保存相关数据&#…

北斗卫星技术引领智能穿戴:未来鞋履的革命

北斗卫星技术引领智能穿戴:未来鞋履的革命 在福建莆田市的苍然社区,70岁以上老人和特殊群体共400多人领到了社区免费发放的北斗定位鞋,该鞋内置北斗导航芯片,具有多种定位、足迹查询、超出范围主动报警等功能。老人穿上这双鞋&am…

[DP学习] 期望DP

一般思路 注:可以用方差求平方的期望 例题一 思路 重点:如何设状态,如何转移。 设状态 f[i] i 张能买到不同卡片的种类数的期望值(直接对问题设置状态) 状态转移:由于从f[i1]转移到 f[i] 时&#xff0…

Android相机调用-libusbCamera【外接摄像头】【USB摄像头】 【多摄像头预览】

有的自定义系统,对于自己外接的USB摄像头,android原生的camera和camera2都无法打开,CameraX也用不了。这时候就要用libusbCamera,这个库可以打开摄像头,还可以多摄像头同时预览。本文主要是同时打开3个USB摄像头的项目…

LabVIEW多场景微振动测试平台与教学应用

LabVIEW多场景微振动测试平台与教学应用 在多种工程实践中,微振动的测试与分析对于评估结构的稳定性及其对环境的影响至关重要。针对这一需求,开发了一套基于NI-cDAQ和LabVIEW的多场景微振动测试平台,提高微振动测试的精确度与灵活性&#x…

ArcgisForJS如何使用ArcGIS Server发布的切片地图服务?

文章目录 0.引言1.准备海量地理数据2.ArcGIS Server发布切片地图服务3.ArcgisForJS使用ArcGIS Server发布的切片地图服务 0.引言 ArcGIS Server是一个由Esri开发的地理信息系统(GIS)服务器软件,它提供了许多功能,包括发布切片地图…

Kotlin 进阶 学习 委托

1.接口委托 package com.jmj.jetpackcomposecompositionlocal.byStudy/*** 接口委托*/ interface HomeDao{fun getAllData():List<String> }interface ADao{fun getById(id:Int):String }class HomeDaoImpl:HomeDao{override fun getAllData(): List<String> {ret…

嵌入式学习笔记总结Day23----minshell项目总结

今天进行了linux系统高级编程io阶段学习的结尾&#xff0c;完成了一个minshell的小项目。 一、项目介绍 利用Linux中IO接口实现MiniShell&#xff0c;实现常用的shell指令的实现。 项目想要实现需要思考的地方有&#xff1a; 1.如何打印终端命令 2.如何接受终端命令 3.实现对…

windows前后端项目部署

装好windows虚拟机 1.远程连接 计算机右击属性&#xff0c;高级防火墙设置&#xff0c;远程连接服务允许 2.安装jdk,tomcat&#xff0c;解压工具 把安装包拖进去 双击安装解压软件 jdk安装 双击安装 配置环境变量&#xff08;复制jdk路径&#xff09; 计算机右击属性高级…

苹果分拣检测YOLOV8NANO

苹果分拣&#xff0c;可以检测成熟、切片、损坏、不成熟四种类型&#xff0c;YOLOV8NANO&#xff0c;训练得到PT模型&#xff0c;然后转换成ONNX&#xff0c;OPENCV的DNN调用&#xff0c;支持C,PYTHON 苹果分拣检测YOLOV8NANO&#xff0c;检测四种类型苹果

好用免费的项目管理工具

禅道 禅道 &#xff08; https://www.zentao.net/ &#xff09;是一款流行的项目管理和缺陷跟踪软件。它的主要功能包括项目管理、需求管理 、缺陷跟踪 、测试管理 、文档管理 、负载统计与报表 、自定义工作流 、访问控制与权限管理等。支持私有化部署&#xff0c;可完全控制…