《初阶数据结构》尾声

目录

前言:

《快速排序(非递归)》:

《归并排序》:

《归并排序(非递归)》:

《计数排序》:

对于快速排序的优化:

分析:

总结:


前言:

上一篇blog重点讲解了《选择排序》《插入排序》,重点介绍了快速排序的三种方法,这篇blog主要讲解《归并排序》以及它的非递归使用方法,最后还会再补充一个计数排序。

上一篇的blog:《插入排序》与《选择排序》-CSDN博客

《快速排序(非递归)》:

typedef int STDataType;typedef struct Stack
{STDataType* a;int top;int capacity;
}ST;void QuickSortNonR(int* a, int begin, int end)
{ST s;STInit(&s);STPush(&s, end);STPush(&s, begin);while (!STEmpty(&s)){int left = STTop(&s);STPop(&s);int right = STTop(&s);STPop(&s);int keyi = PartSort3(a, left, right);//分区间[left, keyi-1] keyi [keyi+1, right]if (keyi + 1 < right){STPush(&s, right);STPush(&s, keyi + 1);}if (left < keyi - 1){STPush(&s, keyi - 1);STPush(&s, left);}}STDestory(&s);
}

我们目前学习数据结构到此,由于我们呢接触了不少的递归操作,不难发现,其实递归的算法与栈这个数据结构较为类似。

我们还是一样先对整体进行排序,分别将begin和end入栈,然后设置好left和right。在第一次对总体排完序后,还是一如既往的会分出两个区间,我们又需要分别对左右两个区间进行排序。

在我们利用栈执行代码的时候要注意先后顺序,先入栈的后后访问,后入栈的先访问。

《归并排序》:

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。

void _MergeSort(int* a, int begin, int end, int* tmp)
{if (begin >= end){return;}int mid = (end + begin) / 2;//[begin, mid] [mid + 1, end]_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid + 1, end, tmp);int begin1 = begin;int end1 = mid;int begin2 = mid + 1;int end2 = end;int i = begin;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] <= a[begin2])//<=才是稳定的{tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}memcpy(a + begin, tmp + begin, sizeof(int)* (end - begin + 1));}void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int)* n);if (tmp == NULL){perror("tmp -> malloc");exit(-1);}_MergeSort(a, 0, n - 1, tmp);}

 所谓归并,就是分而治之。

我们使用递归来实现数组的分割和合并,它的逻辑非常像二叉树的后序遍历,由于我们要使用递归,又要申请临时空间,所以我们先申请好临时空间,再将归并排序过程作为子函数调用,这样不用在每次递归过程申请释放空间

《归并排序(非递归)》:

我们在快速排序的非递归中运用了栈这一数据结构,而我们在实现归并排序中,不可以去使用栈这一数据结构。

首先我们要知道,如果我们不用栈,我们可以用哪些方法替代,一个我们熟知的方法,是栈,还有一个则是循环。

那么话说回来,为什么不能用栈呢?

对于归并排序来说,与我们在二叉树所介绍的后序遍历较为相似,属于是“先把每条路走了,再回来说再见”。相比较于快速排序,利用栈是先对总体进行排序,再分区间进行排序。

而归并排序呢,一上来就把左区间给排完了,那右区间该怎么找呢?出栈后还要在归并的过程中再次使用出栈后的子区间。

所以我们需要利用循环来进行处理。

我们可以理解我从底层向上拓展,所以我们一开始是1个数据和1个数据进行比较,就像:

我们可以设置一个gap,就像希尔排序那样,只不过这次我们需要利用这个gap来限制end和begin

我们初始化gap == 1,意思就是两两比较,a[0]与a[1]比较分出大小,a[1]与a[2]比较分出大小,最后当下标越界了的时候,我们就可以开始对四个四个之间进行比较,让gap*=2即可分好下一个小组。

 

void MergeSortNoR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int)* n);if (tmp == NULL){perror("tmp -> malloc");exit(-1);}int gap = 1;while (gap < n){for (int i = 0; i < n; i += 2 * gap){int begin1 = i;int end1 = i + gap - 1;int begin2 = i + gap;int end2 = i + 2 * gap - 1;if (end1 >= n || begin1 >= n){break;}if (end2 >= n){end2 = n - 1;}int j = begin1;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}memcpy(a + i, tmp + i, sizeof(int)* (end2 - i + 1));}gap *= 2;}}

《计数排序》:

计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。 操作步骤:
1. 统计相同元素出现次数
2. 根据统计的结果将序列回收到原来的序列中

 

void CountSort(int* a, int n)
{int min = a[0];int max = a[0];for (int i = 0; i < n; i++){if (a[i] < min){min = a[i];}if (a[i] > max){max = a[i];}}int range = max - min + 1;int* count = (int*)calloc(range, sizeof(int));//计数for (int i = 0; i < n; i++){count[a[i] - min]++;}//排序int j = 0;for (int i = 0; i < range; i++){while (count[i]--){a[j++] = i + min;}}}

这里我们做了一个优化,假设我们要排序2,3,8888,6666,诸如这样间隔相差很大的数字,如果不做优化处理就直接calloc新数组,那么会造成许多的空间浪费,所以减去最小值,减小空间的浪费。

这种排序的局限性集中于:

1.不适合分散的数据,适合集中的数据。

2.不适合浮点数、字符串、结构体数据排序,只适合整数。



对于快速排序的优化:

假设每次取的关键字key恰好是最大值或者最小值,即数组已经有序,这时的时间复杂度就是O(N^2)

所以我们可以找到最左边,最右边,和中间值,进行三数取中,谁不大不小就让谁做关键字并且与第一个数进行交换。

int GetMidi(int* a, int begin, int end)
{int midi = (begin + end) / 2;if (a[midi] < a[begin]){if (a[end] < a[midi]){return midi;}else if (a[begin] < a[end]){return begin;}else{return end;}}else //a[midi]>a[begin]{if (a[end] > a[midi]){return midi;}else if (a[begin] > a[end]){return begin;}else{return begin;}}
}

分析:

 

 

我们可以通过随机生成100000个数来进行效率的测试。

//测试效率
void TestOp()
{srand(time(0));const int N = 100000;int* a1 = (int*)malloc(sizeof(int)* N);int* a2 = (int*)malloc(sizeof(int)* N);int* a3 = (int*)malloc(sizeof(int)* N);int* a4 = (int*)malloc(sizeof(int)* N);int* a5 = (int*)malloc(sizeof(int)* N);int* a6 = (int*)malloc(sizeof(int)* N);int* a7 = (int*)malloc(sizeof(int)* N);int* a8 = (int*)malloc(sizeof(int)* N);int* a9 = (int*)malloc(sizeof(int)* N);for (int i = 0; i < N; ++i){a1[i] = rand();a2[i] = a1[i];a3[i] = a1[i];a4[i] = a1[i];a5[i] = a1[i];a6[i] = a1[i];a7[i] = a1[i];a9[i] = a1[i];}for (int i = 0; i < N; i++){a8[i] = i;}int begin1 = clock();InsertSort(a1, N);int end1 = clock();int begin2 = clock();ShellSort(a2, N);int end2 = clock();int begin3 = clock();SelectSort(a3, N);int end3 = clock();int begin4 = clock();HeapSort(a4, N);int end4 = clock();int begin5 = clock();QuickSort(a5, 0, N - 1);int end5 = clock();int begin6 = clock();MergeSort(a6, N);int end6 = clock();int begin9 = clock();CountSort(a9, N);int end9 = clock();printf("InsertSort(直接插入排序):%d\n", end1 - begin1);printf("ShellSort(希尔排序):%d\n", end2 - begin2);printf("SelectSort(选择排序):%d\n", end3 - begin3);printf("HeapSort(堆排序):%d\n", end4 - begin4);printf("QuickSort(快速排序):%d\n", end5 - begin5);printf("MergeSortSort(归并排序):%d\n", end6 - begin6);printf("CountSort(计数排序):%d\n", end9 - begin9);free(a1);free(a2);free(a3);free(a4);free(a5);free(a6);free(a7);free(a9);
}

 

总结:

 本章到此,数据结构初阶的内容就告一段落了,接下来我们逐步讲解C++与Linux的各个重点内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2803356.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

vue3 toRefs之后的变量修改方法

上效果 修改值需要带上解构之前的对象名obj&#xff0c; changeName:()>{ // toRefs 解决后变量修改值方法&#xff1a; 解构前变量.字段新值 obj.name FEIFEI; } } 案例源码 <!DOCTYPE html> <html> <head><me…

APP被针对攻击了,要怎么解决

随着APP行业的兴起&#xff0c;游戏公司异军突起&#xff0c;不管是在控证还是攻击方面都是属于最复杂的一个场面&#xff0c;游戏APP逐渐成为DDOS流量攻击的“重灾区”。没有提前做好了解就盲目进军游戏APP行业&#xff0c;一旦被攻击就会让公司束手无策。那么&#xff0c;刚上…

【前端素材】推荐优质后台管理系统APP Zina平台模板(附源码)

一、需求分析 当我们从多个层次来详细分析后台管理系统时&#xff0c;可以将其功能和定义进一步细分&#xff0c;以便更好地理解其在不同方面的作用和实际运作。 1. 功能层次 a. 用户管理功能&#xff1a; 用户注册和登录&#xff1a;管理用户账户的注册和登录过程。权限管…

Vue 中 onclick和@click区别

文章目录 一、直接上结论二、验证代码&#xff0c;可直接运行三、点击结果 一、直接上结论 onclick 只能触发 js的原生方法&#xff0c;不能触发vue的封装方法click 只能触发vue的封装方法&#xff0c;不能触发js的原生方法 二、验证代码&#xff0c;可直接运行 <!DOCTYP…

【LeetCode刷题笔记】242.有效的字母异位词

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; 更多算法知识专栏&#xff1a;算法分析&#x1f525; 给大家跳段街舞感谢…

【寸铁的刷题笔记】树、dfs、bfs、回溯、递归(一)

【寸铁的刷题笔记】树、dfs、bfs、回溯、递归(一) 大家好 我是寸铁&#x1f44a; 总结了一篇刷题关于树、dfs、bfs、回溯、递归的文章✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 105. 从前序与中序遍历序列构造二叉树 模拟分析图 代码实现 /*** Definition for a binary tre…

DataDreamer:让创建自定义数据集轻松无比!还自带标注!

编辑&#xff1a;OAK中国 首发&#xff1a;oakchina.cn 喜欢的话&#xff0c;请多多&#x1f44d;⭐️✍ 内容可能会不定期更新&#xff0c;官网内容都是最新的&#xff0c;请查看首发地址链接。 ▌前言 Hello&#xff0c;大家好&#xff0c;这里是OAK中国&#xff0c;我是Ash…

基于EasyCVR视频汇聚系统的公安网视频联网共享视频云平台建设思路分析(二)

一、需求分析 随着科技的飞速发展&#xff0c;视频监控联网技术在公安工作中发挥着越来越重要的作用。为了提高公安部门对各类事件的响应速度和处理能力&#xff0c;建设一个高效、稳定的公安视频联网共享云平台显得尤为重要。通过建设开放的视频联网共享云平台&#xff0c;实…

非洲数字经济持续崛起 本地化策略让传音提前入局

非洲市场&#xff0c;被誉为全球最后的“边疆级”市场&#xff0c;吸引着全球目光。近日&#xff0c;非洲开发银行最新报告指出&#xff0c;未来两年非洲的经济增长将优于世界其他地区&#xff0c;2023 年和 2024 年实际国内生产总值 (GDP) 平均约为 4%。广阔的非洲大陆焕发着勃…

【spring】 ApplicationListener的使用及原理简析

文章目录 使用示例&#xff1a;原理简析&#xff1a; 前言&#xff1a;ApplicationListener 是spring提供的一个监听器&#xff0c;它可以实现一个简单的发布-订阅功能&#xff0c;用有点外行但最简单通俗的话来解释&#xff1a;监听到主业务在执行到了某个节点之后&#xff0c…

【Python笔记-设计模式】对象池模式

一、说明 用于管理对象的生命周期&#xff0c;重用已经创建的对象&#xff0c;从而减少资源消耗和创建对象的开销 (一) 解决问题 主要解决频繁创建和销毁对象所带来的性能开销问题。如数据库连接、线程管理、网络连接等&#xff0c;对象的创建和销毁成本相对较高&#xff0c…

SOLIDWORKS Visualize 界面介绍

现在有越来越多的朋友在工作中选择使用SOLIDWORKS Visualize正版软件&#xff0c;这真是太棒了!这次的主题是小索带大家了解SOLIDWORKS Visualize界面&#xff0c;让更多的朋友快速的熟悉SOLIDWORKS Visualize界面。 【菜单栏】位于界面的顶端&#xff0c;菜单栏包含多个下拉菜…

[linux]进程间通信(IPC)———共享内存(shm)(什么是共享内存,共享内存的原理图,共享内存的接口,使用演示)

一、什么是共享内存 共享内存区是最快的&#xff08;进程间通信&#xff09;IPC形式。一旦这样的内存映射到共享它的进程的地址空间&#xff0c;这些进程间数据传递不再涉及到内核&#xff0c;换句话说是进程不再通过执行进入内核的系统调用来传递彼此的数据。注意&#xff1a;…

微软推出Windows照片编辑新功能:AI魔术橡皮擦生成擦除工具让照片修图更轻松

微软宣布推出生成擦除功能&#xff0c;该功能让用户在 Windows 捆绑的照片应用程序中使用人工智能技术对照片进行修改。这一功能类似于谷歌和三星设备上的 AI 选择性照片橡皮擦&#xff0c;让用户可以轻松消除照片中的不需要的元素&#xff0c;如狗的皮带或意外出现的人物。不仅…

一周学会Django5 Python Web开发-Django5路由变量

锋哥原创的Python Web开发 Django5视频教程&#xff1a; 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计22条视频&#xff0c;包括&#xff1a;2024版 Django5 Python we…

Unity资源加密解决方案

据统计&#xff0c;全球范围内超过50%的游戏均使用Unity创作而成&#xff0c;作为游戏开发市场第一大游戏引擎占有者&#xff0c;Unity已经全面覆盖到各个游戏平台。 全球游戏引擎市场占有率 由于体量庞大&#xff0c;Unity游戏已成为受游戏黑灰产攻击的重灾区&#xff0c;因游…

C#_扩展方法

简述&#xff1a; 扩展方法所属类必需是静态类&#xff08;类名依据规范通常为XXXExtension&#xff0c;XXX为被扩展类&#xff09;扩展方法必需是公有的静态方法扩展方法的首个参数由this修饰&#xff0c;参数类型为被扩展类型 示例&#xff1a; static class DoubleExtens…

U盘故障频发?了解原因,掌握正确使用方法!

U盘文件夹变打不开的文件是一种常见的故障&#xff0c;表现为用户无法访问存储在U盘中的文件或文件夹。这种故障通常是由于各种原因引起的&#xff0c;包括物理损坏、文件系统错误、病毒感染等。当遇到这种情况时&#xff0c;用户需要采取一些方法来恢复文件。 U盘故障频发&…

Uniapp + VUE3.0 实现双向滑块视频裁剪效果

效果图 <template><view v-if"info" class"all"><video:src"info.videoUrl"class"video" id"video" :controls"true" object-fit"fill" :show-fullscreen-btn"false"play-btn…