Python中使用opencv-python进行人脸检测

Python中使用opencv-python进行人脸检测

之前写过一篇VC++中使用OpenCV进行人脸检测的博客。以数字图像处理中经常使用的lena图像为例,如下图所示:
lena.png

使用OpenCV进行人脸检测十分简单,OpenCV官网给了一个Python人脸检测的示例程序,
Python人脸检测目录
objectDetection.py代码如下:

from __future__ import print_function
import cv2 as cv
import argparsedef detectAndDisplay(frame):frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)frame_gray = cv.equalizeHist(frame_gray)#-- Detect facesfaces = face_cascade.detectMultiScale(frame_gray)for (x,y,w,h) in faces:center = (x + w//2, y + h//2)frame = cv.ellipse(frame, center, (w//2, h//2), 0, 0, 360, (255, 0, 255), 4)faceROI = frame_gray[y:y+h,x:x+w]#-- In each face, detect eyeseyes = eyes_cascade.detectMultiScale(faceROI)for (x2,y2,w2,h2) in eyes:eye_center = (x + x2 + w2//2, y + y2 + h2//2)radius = int(round((w2 + h2)*0.25))frame = cv.circle(frame, eye_center, radius, (255, 0, 0 ), 4)cv.imshow('Capture - Face detection', frame)parser = argparse.ArgumentParser(description='Code for Cascade Classifier tutorial.')
parser.add_argument('--face_cascade', help='Path to face cascade.', default='data/haarcascades/haarcascade_frontalface_alt.xml')
parser.add_argument('--eyes_cascade', help='Path to eyes cascade.', default='data/haarcascades/haarcascade_eye_tree_eyeglasses.xml')
parser.add_argument('--camera', help='Camera divide number.', type=int, default=0)
args = parser.parse_args()face_cascade_name = args.face_cascade
eyes_cascade_name = args.eyes_cascadeface_cascade = cv.CascadeClassifier()
eyes_cascade = cv.CascadeClassifier()#-- 1. Load the cascades
if not face_cascade.load(cv.samples.findFile(face_cascade_name)):print('--(!)Error loading face cascade')exit(0)
if not eyes_cascade.load(cv.samples.findFile(eyes_cascade_name)):print('--(!)Error loading eyes cascade')exit(0)camera_device = args.camera
#-- 2. Read the video stream
cap = cv.VideoCapture(camera_device)
if not cap.isOpened:print('--(!)Error opening video capture')exit(0)while True:ret, frame = cap.read()if frame is None:print('--(!) No captured frame -- Break!')breakdetectAndDisplay(frame)if cv.waitKey(10) == 27:break

所在目录为D:\env_build\opencv4.9.0\opencv\sources\samples\python\tutorial_code\objectDetection\cascade_classifier\objectDetection.py

人脸识别的背景

人脸识别可以用在身份认证,门禁等场合中,可以通过训练大量的人脸数据获取人脸的特征。但是实际场景可以比较复杂,由于灯光、视角、视距、摄像头抖动以及数字噪声的变化,图像细节变得不稳定;还有戴了口罩、帽子之后对于人脸的检测就变得更麻烦了。Haar 特征是一种用于实现实时人脸跟踪的特征。每一个 Haar 特征都描述了相邻图像区域的对比模式。例如,边,顶点和细线都能生成具有判别性的特征。

haar级联数据获取

在 sources 的一个文件夹 data/haarcascades。该文件夹包含了所有 OpenCV 的人脸检测的 XML 文件,这些可用于检测静止图像、视频和摄像头所得到图像中的人脸。如下图所示:
haar级联数据

  • 人脸检测器(默认):haarcascade_frontalface_default.xml
  • 人脸检测器(快速 Harr):haarcascade_frontalface_alt2.xml
  • 人脸检测器(侧视):haarcascade_profileface.xml
  • 眼部检测器(左眼):haarcascade_lefteye_2splits.xml
  • 眼部检测器(右眼):haarcascade_righteye_2splits.xml
  • 身体检测器:haarcascade_fullbody.xml
  • 上半身检测器:haarcascade_upperbody.xml
    其中,本文中我们使用默认的人脸检测器xml配置文件haarcascade_frontalface_default.xml ,可以从https://github.com/murtazahassan/Learn-OpenCV-in-3-hours/blob/master/Resources/haarcascade_frontalface_default.xml处下载

资源图片地址

人脸资源图片地址为:https://github.com/murtazahassan/Learn-OpenCV-in-3-hours/blob/master/Resources/lena.png

Python中使用opencv-python库进行人脸检测示例代码

示例代码如下所示:

import cv2faceCascade = cv2.CascadeClassifier("Resources/haarcascade_frontalface_default.xml")
img = cv2.imread("Resources/lena.png")
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)faces = faceCascade.detectMultiScale(imgGray, 1.1, 4)for (x, y, w, h) in faces:cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)cv2.imshow("Result", img)
cv2.waitKey(0)

运行结果如下图所示:
程序运行结果

使用OpenCV官方的python人脸检测示例代码进行实时人脸和眼睛检测

opencv4.9.0\opencv\sources\samples\python\tutorial_code\objectDetection\cascade_classifier\objectDetection.py修改后的示例代码如下:

from __future__ import print_function
import cv2 as cv
import argparsedef detectAndDisplay(frame):frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)frame_gray = cv.equalizeHist(frame_gray)#-- Detect facesfaces = face_cascade.detectMultiScale(frame_gray)for (x,y,w,h) in faces:center = (x + w//2, y + h//2)frame = cv.ellipse(frame, center, (w//2, h//2), 0, 0, 360, (255, 0, 255), 4)faceROI = frame_gray[y:y+h,x:x+w]#-- In each face, detect eyeseyes = eyes_cascade.detectMultiScale(faceROI)for (x2,y2,w2,h2) in eyes:eye_center = (x + x2 + w2//2, y + y2 + h2//2)radius = int(round((w2 + h2)*0.25))frame = cv.circle(frame, eye_center, radius, (255, 0, 0 ), 4)cv.imshow('Capture - Face detection', frame)face_cascade_name = "data/haarcascades/haarcascade_frontalface_alt.xml"
eyes_cascade_name = "data/haarcascades/haarcascade_eye_tree_eyeglasses.xml"face_cascade = cv.CascadeClassifier()
eyes_cascade = cv.CascadeClassifier()#-- 1. Load the cascades
if not face_cascade.load(cv.samples.findFile(face_cascade_name)):print('--(!)Error loading face cascade')exit(0)
if not eyes_cascade.load(cv.samples.findFile(eyes_cascade_name)):print('--(!)Error loading eyes cascade')exit(0)camera_device = 0
#-- 2. Read the video stream
cap = cv.VideoCapture(camera_device)
if not cap.isOpened:print('--(!)Error opening video capture')exit(0)while True:ret, frame = cap.read()if frame is None:print('--(!) No captured frame -- Break!')breakdetectAndDisplay(frame)if cv.waitKey(10) == 27:break

上述代码从摄像头实时采集数据,使用haar级联人脸正面和眼睛的训练测试结果xml配置文件,对采集到的每一帧图像进行人脸和眼睛的检测,并做椭圆标记,如下图所示:
实时人脸和眼睛检测

参考资料

  • 人脸识别-Haar级联
  • 人脸识别-多张人脸检测
  • LEARN OPENCV in 3 HOURS with Python | Including 3xProjects | Computer Vision
  • Learn-OpenCV-in-3-hours
  • LEARN OPENCV C++ in 4 HOURS | Including 3x Projects | Computer Vision
  • murtazahassan/Learn-OpenCV-cpp-in-4-Hours
  • OpenCV官网
  • OpenCV-Get Started
  • OpenCV Github仓库源代码
  • OpenCV tutorial

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2778202.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

探索数据可视化:Matplotlib在Python中的高效应用

探索数据可视化:Matplotlib在Python中的高效应用 引言Matplotlib基础安装和配置Matplotlib基础概念绘制简单图表线形图散点图柱状图 图表定制和美化修改颜色、线型和标记添加标题、图例和标签使用样式表和自定义样式 高级图表类型绘制高级图表多图布局和复杂布局交互…

linux进程(环境变量)

目录 正文: 常见环境变量 和环境变量相关的的命令 通过代码获取环境变量 主函数参数 三个参数 参数调用 进程优先级 查看系统进程 PRI和NI 优先级修改 前言: 环境变量 (environment variables) 一般是指在操作系统中用来指定操作系统运行环境…

如何快速搭建springboot项目(新手入门)

一、创建项目 1.1、创建项目 1.2、配置编码 1.3、取消无用提示 1.4、取消无用参数提示 二、添加POM父依赖 <!-- 两种方式添加父依赖或者import方式 --> <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-p…

从零开始实现消息队列(一)

从零开始实现消息队列 .什么是消息队列需求分析核心概念模型 . 什么是消息队列 相信大家都了解过阻塞队列和生产者消费者模型,而阻塞队列最大的用途,就是用于实现生产者消费者模型,生产者消费者模型有以下好处: 解耦合 解释: 当主机A给主机B发消息时,A给B发送请求,B给A返回响应…

Python实现计数排序

对于如果存在使用两个数组成员进行比较的操作&#xff0c;该方法会导致排序算法的时间复杂度会存在一个下界问题&#xff0c;该问题在使用计数排序的时候可以突破这个理论下界&#xff0c;也即是不适用元素比对的操作的算法之一&#xff0c;计数排序。 添加图片注释&#xff0c…

部门人力分配 - 华为OD统一考试

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 200分 题解&#xff1a; Java / Python / C 题目描述 部门在进行需求开发时需要进行人力安排。当前部门需要完成 N 个需求&#xff0c;需求用 requirements[i] 表示&#xff0c;requirements[i] 表示第 i 个需求的工作…

开发JSP自定义标记

开发JSP自定义标记 您已经学习了如何用JavaBean处理JSP页面的业务逻辑。除此以外,您还可以用自定义标记处理JSP应用程序中反复出现的业务逻辑要求。 tag是程序中使用的执行重复性任务的可重用单元。例如, 是使主体文本在网页中间出现的HTML标记。JSP可用于创建于XML标记类似…

操作系统(13)-----文件管理

目录 一.内存映射文件 传统的文件访问方式&#xff1a; 内存映射文件&#xff1a; 内存映射文件与传统文件访问方式的区别&#xff1a; 文件共享的实现&#xff1a; 内存映射文件的优点&#xff1a; 二.文件的属性 三.文件的逻辑结构 1.无结构文件 2.有结构文件 四.…

多模态知识图谱:感知与认知的交汇

目录 前言1 多模态知识图谱的概念1.1 感知系统与认知系统的连接1.2 信息形式的整合与融合1.3 全面、多维度的认知基础 2 多模态的作用2.1 模态的知识互补2.2 模态实体消歧2.3 模态语义搜索2.4 知识图谱补全2.5 多模态任务增强 3 多模态知识图谱发展历史3.1 初期模态数据整合3.2…

CSS3 基本语法

CSS3 基本语法 1. CSS3 新增长度单位 rem 根元素字体大小的倍数&#xff0c;只与根元素字体大小有关。vw 视口宽度的百分之多少 10vw 就是视口宽度的 10% 。vh 视口高度的百分之多少 10vh 就是视口高度的 10% 。vmax 视口宽高中大的那个的百分之多少。&#xff08;了解即可&am…

微信视频号文章数据统计

微信视频号后台里有关于单篇文章的数据&#xff08;见下图&#xff09;。如果要做进一步的分析&#xff0c;可以将数据下载到本地。 from datetime import datetime import math import csvdef parse_date_time(date_time_str):# 将输入字符串解析为datetime对象date_time_obj …

问题:2、计算机网络的目标是实现________。 #媒体#知识分享

问题&#xff1a;2、计算机网络的目标是实现________。 A&#xff0e;数据处理 B&#xff0e;信息传输与数据处理 C&#xff0e;资源共享与信息传输 D&#xff0e;文献查询 参考答案如图所示

新春快乐(烟花、春联)【附源码】

新春快乐 一&#xff1a; C语言 -- 烟花二&#xff1a;Python -- 春联三&#xff1a;Python -- 烟花四&#xff1a;HTML -- 烟花 一&#xff1a; C语言 – 烟花 运行效果&#xff1a; #include <graphics.h> #include <math.h> #include <time.h> #include…

Matlab使用点云工具箱进行点云配准ICP\NDT\CPD

一、代码 主代码main.m&#xff0c;三种配准方法任选其一 % 读取点云文件 source_pc pcread(bun_zipper.ply); target_pc pcread(bun_zipper2.ply);% 下采样 ptCloudA point_downsample(source_pc); ptCloudB point_downsample(target_pc);% 配准参数设置 opt param_set…

node网站 宝塔 面板配置 防止刷新404

1.问题 我现在配置了一个网站 后台项目 放到了宝塔上 将相应的域名和项目都配置好了 域名也可以访问 但是有的时候 出现了404 类似这种404 这个资源找不到 2.说明 其实这个问题的原因是nginx 的问题 反向代理的原因 3.解决 在这个配置文件中 有个配置文件 # 防止刷新404l…

Python算法题集_K 个一组翻转链表

Python算法题集_K 个一组翻转链表 题25&#xff1a;K 个一组翻转链表1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【依次反转】2) 改进版一【列表反转】3) 改进版二【堆栈大法】4) 改进版三【递归大法】 4. 最优算法 本文为Python算法题集之一…

在JSP中实现JAVABEAN

在JSP中实现JAVABEAN 问题陈述 创建Web应用程序以连接数据库并检索作者名、地址、城市、州及邮政编码等与作者的详细信息。JavaBean组件应接受作者ID、驱动程序名及URL作为参数。信息要从authors表中检索。 解决方案 要解决上述问题,需要执行以下任务: 创建Web应用程序。创…

Backtrader 文档学习- Plotting - Plotting Date Ranges

Backtrader 文档学习- Plotting - Plotting Date Ranges 1.概述 1.9.31.x版本增加了绘制部分图形的功能。 可以使用策略实例中保留完整长度的时间戳数组的索引或者使用实际的datetime.date 或datetime.datetime 实例来限制需要绘制的内容。 仍然可以使用标准的cerebro.plot…

基于 multiprocessing.dummy 的多线程池与单线程访问多网页的比较示例

一、示例代码&#xff1a; from multiprocessing.dummy import Pool as ThreadPool import time import requestsurls [ # URL队列&#xff0c;通过多线程访问http://www.python.org,http://www.python.org/about/,http://www.…

Eclipse导入maven项目或者创建maven项目时,报错Could not calculate build plan: Plugin

问题&#xff1a;Eclipse导入maven项目或者创建maven项目时,报错Could not calculate build plan: Plugin 1.上述问题大概是项目不能加载此maven插件&#xff0c;在pom文件中添加依赖项 <dependency><groupId>org.apache.maven.plugins</groupId><artifa…