机器学习复习(8)——逻辑回归

目录

逻辑函数(Logistic Function)

逻辑回归模型的假设函数

从逻辑回归模型转换到最大似然函数过程

最大似然函数方法

梯度下降


逻辑函数(Logistic Function)

首先,逻辑函数,也称为Sigmoid函数,是一个常见的S形函数。其数学表达式为:

g(z)=\frac1{1+e^{-z}}

这个函数的特点是,其输出值总是在0和1之间。这个性质使得Sigmoid函数非常适合用来进行二分类,在机器学习中,它可以将任意实数映射到(0, 1)区间,用来表示某个事件发生的概率。例如,在逻辑回归模型中,我们可以用它来预测一个实例属于某个类别的概率。

def sigmoid(z):return 1 / (1 + np.exp(-z))

可视化:

nums = np.arange(-10, 10, step=1)fig, ax = plt.subplots(figsize=(12,8))
ax.plot(nums, sigmoid(nums), 'r')
plt.show()

逻辑回归模型的假设函数

逻辑回归模型的假设函数将输入特征X和参数θ的线性组合通过逻辑函数转换为一个概率值,其公式为:

h_\theta(x)=\frac1{1+e^{-\theta^TX}}

这里,θ^T X是参数θ和输入特征X的点积,它将多个输入特征线性组合成一个实数值,然后通过逻辑函数映射到(0, 1)区间。这个映射的结果可以被解释为在给定输入特征X的条件下,预测结果为正类的概率。

逻辑回归模型通过优化参数θ来最大化观测数据的似然函数,从而找到最佳的决策边界,以区分不同的类别。在实际应用中,逻辑回归是一个非常强大且广泛使用的分类算法,特别是在二分类问题中。 

从逻辑回归模型转换到最大似然函数过程

逻辑回归模型的假设函数定义为:

h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}}

为了找到最佳的参数θ,我们使用最大似然估计。对于二分类问题,给定的数据集D=\{(x^{(i)},y^{(i)})\}_{i=1}^{m},其中y^{(i)}\in\{0,1\},,我们可以写出似然函数:

L(\theta)=P(y|X;\theta)=\prod_{i=1}^m(h_\theta(x^{(i)}))^{y^{(i)}}(1-h_\theta(x^{(i)}))^{1-y^{(i)}}

这个似然函数表示了,在给定参数θ和输入X的条件下,观察到当前数据集y的概率。最大化这个似然函数等价于最大化观测数据在当前模型参数下出现的概率。

为了便于计算,通常对似然函数取对数,得到对数似然函数:

\log L(\theta)=\sum_{i=1}^m[y^{(i)}\log h_\theta(x^{(i)})+(1-y^{(i)})\log(1-h_\theta(x^{(i)}))]

 最大化对数似然函数相对简单,因为对数函数是单调的,且对数似然函数是关于θ的凸函数,容易通过梯度下降等优化算法找到全局最优解。

在机器学习中,我们通常通过最小化损失函数(而不是最大化似然函数)来训练模型。因此,我们将最大化对数似然问题转化为最小化损失函数问题。损失函数是对数似然函数的负值,平均化到每个样本上,即:

这就是逻辑回归中使用的损失函数,也称为对数损失或交叉熵损失。通过最小化这个损失函数,我们可以找到最佳的模型参数θ,使模型对训练数据的拟合程度最高,即最可能产生观测数据的参数。 

最大似然函数方法

由于乘除法不太好优化计算,通常通过对数的方法进行优化求解,损失函数如下:

\begin{aligned}J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}\log(h_{\theta}(x^{(i)}))+(1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))]\end{aligned}

def cost(theta, X, y):theta = np.matrix(theta)X = np.matrix(X)y = np.matrix(y)first = np.multiply(-y, np.log(sigmoid(X * theta.T)))second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))return np.sum(first - second) / (len(X))

梯度下降

实际上这里只计算量梯度,并没有下降

def gradient(theta, X, y):theta = np.matrix(theta)X = np.matrix(X)y = np.matrix(y)parameters = int(theta.ravel().shape[1])grad = np.zeros(parameters)error = sigmoid(X * theta.T) - yfor i in range(parameters):term = np.multiply(error, X[:,i])grad[i] = np.sum(term) / len(X)return grad

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2777836.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

安全之护网(HVV)、红蓝对抗

文章目录 红蓝对抗什么是护网行动?护网分类护网的时间 什么是红蓝对抗红蓝对抗演练的目的什么是企业红蓝对抗红蓝对抗价值参考 红蓝对抗 什么是护网行动? 护网的定义是以国家组织组织事业单位、国企单位、名企单位等开展攻防两方的网络安全演习。进攻方…

C++ 贪心 区间问题 区间选点

给定 N 个闭区间 [ai,bi] ,请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。 输出选择的点的最小数量。 位于区间端点上的点也算作区间内。 输入格式 第一行包含整数 N ,表示区间数。 接下来 N 行,每行包含两…

洛谷p4391 无限传输

考察字符串周期的题 题目链接 结论 要求字串 s s s的最短循环字串长就是: a n s n − p m t [ n ] ansn-pmt[n] ansn−pmt[n] 证明如下: 这是最大的前缀和后缀 现在我们做如下操作: 补全字段 a a a和字段 b b b,按子段 a a a的…

Linux操作系统基础(五):Linux的目录结构

文章目录 Linux的目录结构 一、Linux目录与Windows目录区别 二、常见目录介绍(记住重点) Linux的目录结构 一、Linux目录与Windows目录区别 Linux的目录结构是一个树型结构 Windows 系统 可以拥有多个盘符, 如 C盘、D盘、E盘 Linux 没有盘符 这个概…

AJAX——AJAX入门

1 什么是AJAX? Ajax(Asynchronous JavaScript and XML)是一种用于在Web应用程序中实现异步通信的技术。 简单点说,就是使用XMLHttpRequest对象与服务器通信。它可以使用JSON、XML、HTML和test文本等格式发送和接收数据。 AJAX最吸…

机器学习系列——(十一)回归

引言 在机器学习领域,回归是一种常见的监督学习任务,它主要用于预测数值型目标变量。回归分析能够通过对输入特征与目标变量之间的关系建模,从而对未知数据做出预测。 概念 回归是机器学习中的一种监督学习方法,用于预测数值型目…

一个坐标系查询网站python获取所有坐标系

技术路线选择 我是使用的vue 3开发的网页界面,element-plus构建网页组件,openlayer展示地图,express提供后端API,vercel进行在线部署。 python获取所有坐标系 想要展示所有坐标系,那需要先获取坐标系,怎么…

Openwifi 开源项目解读(一)

Openwifi 是一个关于wifi 系统的开源项目,是一个少有的优秀的关于wifi的开源项目,项目中包括了wifi的基带、lowmac、linux驱动 等三部分,其中基带、lowmac部分是在FPGA中实现,wifi驱动部分是运行在Linux下,因此openwif…

【资料分享】基于单片机大气压监测报警系统电路方案设计、基于飞思卡尔的无人坚守点滴监控自动控制系统设计(程序,原理图,pcb,文档)

基于单片机大气压监测报警系统电路方案设计 功能:实现的是大气压检测报警系统,可以通过传感器实时检测当前大气压值,可以设定大气压正常范围,当超过设定范围进行报警提示。 资料:protues仿真,程序&#x…

【教学类-47-01】UIBOT+IDM下载儿童古诗+修改文件名

背景需求: 去年12月,我去了其他幼儿园参观,这是一个传统文化德育教育特色的学校,在“古典集市”展示活动中,小班中班大班孩子共同现场念诵《元日》《静夜思》包含了演唱版本和儿歌念诵版本。 我马上也要当班主任了&a…

C++ 贪心 区间问题 最大不相交区间数

给定 N 个闭区间 [ai,bi] ,请你在数轴上选择若干区间,使得选中的区间之间互不相交(包括端点)。 输出可选取区间的最大数量。 输入格式 第一行包含整数 N ,表示区间数。 接下来 N 行,每行包含两个整数 ai…

基于鲲鹏服务NodeJs安装

准备工作 查看当前环境 uname -a查看鲲鹏云CPU架构 cat /proc/cpuinfo# 查看CPU architecture项,8表示v8,7表示v7下载Node.js NodeJs 选择 Linux Binaries (ARM) ARMv8 wget -c https://nodejs.org/dist/v12.18.3/node-v12.18.3-linux-arm64.tar.xz…

WWW 万维网

万维网概述 万维网 WWW (World Wide Web) 并非某种特殊的计算机网络。 万维网是一个大规模的、联机式的信息储藏所。 万维网用链接的方法能非常方便地从互联网上的一个站点访问另一个站点,从而主动地按需获取丰富的信息。 这种访问方式称为“链接”。 万维网是分…

【Kubernetes】在k8s1.24及以上版本基于containerd容器运行时测试pod从harbor拉取镜像

基于containerd容器运行时测试pod从harbor拉取镜像 1、安装高版本containerd2、安装docker3、登录harbor上传镜像4、从harbor拉取镜像 1、安装高版本containerd 集群中各个节点都要操作 yum remove containerd.io -y yum install containerd.io-1.6.22* -y cd /etc/containe…

Docker 有哪些常见的用途?

Docker 是一种容器化技术,它允许应用程序在不同的环境之间具有一致的运行环境。这使得 Docker 在开发和运维领域中非常受欢迎,因为它简化了应用程序的部署和管理。以下是 Docker 的一些常见用途: 快速部署应用程序 Docker 允许开发人员和运…

[NSSCTF]-Web:[SWPUCTF 2021 新生赛]easy_sql解析

查看网页 有提示,参数是wllm,并且要我们输入点东西 所以,我们尝试以get方式传入 有回显,但似乎没啥用 从上图看应该是字符型漏洞,单引号字符注入 先查看字段数 /?wllm2order by 3-- 没回显 报错了,说明…

Java编程构建高效二手交易平台

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

Habitat环境学习四:Habitat-sim基础用于导航——使用导航网格NavMesh

如何使用导航网格NavMesh 官方教程1、NavMesh基础定义1.1 使用NavMesh的原因1.2 什么是NavMesh 2、NavMesh的使用方法2.1 获取自上而下Top down view视角地图2.2 在NavMesh中进行查询以及随机产生可导航点2.3 查找最短路径2.4 场景加载NavMesh2.5 重新计算并生成NavMesh2.6 什么…

无题2024

念旧 阿悠悠 专辑:念旧 发行时间 2019-08-25 念旧 播报编辑讨论1上传视频 阿悠悠演唱歌曲 《念旧》是由一博作词,一博和张池作曲,阿悠悠演唱的歌曲,发行于2019年8月25日。 [1]收录于同名专辑《念旧》中。 相关星图 查…

立体感十足的地图组件,如何设计出来的?

以下是一些设计可视化界面中的地图组件更具备立体感的建议: 使用渐变色: 可以使用不同的渐变色来表现地图的高低差异,例如使用深蓝色或深紫色来表示海底,使用浅绿色或黄色来表示低地,使用橙色或红色来表示高地。 添加…