机器学习系列——(十一)回归

引言

在机器学习领域,回归是一种常见的监督学习任务,它主要用于预测数值型目标变量。回归分析能够通过对输入特征与目标变量之间的关系建模,从而对未知数据做出预测。

概念

回归是机器学习中的一种监督学习方法,用于预测数值型目标变量。它通过建立特征与目标变量之间的关系模型,对未知数据做出预测。

举个例子来说明回归的概念:

假设我们希望根据房屋的面积来预测其价格。我们可以收集一组包含多个房屋的数据样本,每个样本包含房屋的面积和对应的价格。这些数据样本就构成了我们的训练集。

回归模型的目标是找到一个函数来描述输入特征(房屋的面积)与目标变量(价格)之间的关系。在简单线性回归中,我们假设房屋的价格与面积之间存在着线性关系,即价格可以用面积来预测。我们可以使用最小二乘法来拟合一条直线,使得该直线与所有样本点的误差最小化。

通过得到回归模型,我们可以对未知的房屋面积进行预测。例如,如果有一座新的房屋,我们知道它的面积是100平方米,那么通过回归模型,我们可以预测其价格为150万元。

需要注意的是,回归并不仅限于简单的直线拟合,我们还可以使用多项式回归来描述非线性关系,或者使用其他更复杂的回归算法进行建模。回归模型在许多领域都有广泛的应用,如金融预测、销售预测、医学研究等。它能够帮助我们理解变量之间的关系,并进行准确的数值预测。

常见的回归算法:

  1. 线性回归(Linear Regression): 线性回归是一种基本且常用的回归算法。它通过拟合一个线性模型来描述特征与目标变量之间的关系。线性回归假设输入特征与目标变量之间存在线性关系,并使用最小二乘法来估计模型参数。线性回归易于实现和解释,但对于非线性关系的数据拟合效果较差。

  2. 多项式回归(Polynomial Regression): 多项式回归是在线性回归的基础上引入多项式特征的一种扩展形式。通过将特征进行多项式转换,可以更好地拟合复杂的非线性关系。多项式回归能够提高模型的灵活性,但在高维度的情况下容易发生过拟合。

  3. 岭回归(Ridge Regression): 岭回归是一种正则化线性回归算法,通过加入L2正则化项来缩减模型参数的大小。L2正则化能够有效地减小模型的方差,降低过拟合的风险。岭回归适用于特征之间存在共线性的情况,可以提高模型的泛化能力。

  4. Lasso回归(Lasso Regression): Lasso回归是一种使用L1正则化的线性回归算法。与岭回归不同,Lasso回归能够将某些模型参数压缩为零,实现特征选择的效果。L1正则化具有稀疏性,因此Lasso回归常被用于特征选择和模型简化。

  5. 决策树回归(Decision Tree Regression): 决策树回归是一种非参数化的回归算法,它将输入空间划分为多个区域,并在每个区域内拟合一个局部模型。决策树回归适用于复杂的非线性关系,并且能够处理离散型和连续型特征。然而,决策树容易产生过拟合,因此常常需要剪枝等策略来提高泛化性能。

  6. 随机森林回归(Random Forest Regression): 随机森林回归是基于决策树的集成学习方法,通过随机选择特征和样本来构建多个决策树。随机森林回归具有较强的鲁棒性和泛化能力,能够应对高维度数据和噪声。此外,它还可以评估特征的重要性,用于特征选择和解释模型。

  7. 支持向量回归(Support Vector Regression, SVR): 支持向量回归是一种使用支持向量机(SVM)技术进行回归分析的方法。SVR通过将目标变量与一条超平面之间的间隔最大化来拟合模型。SVR适用于非线性关系和高维度数据,并具有较好的泛化性能。然而,SVR对参数的选择敏感,需要进行调优。

总结

本篇博客简单介绍了回归的概念和几种常见的回归算法,包括线性回归、多项式回归、岭回归、Lasso回归、决策树回归、随机森林回归和支持向量回归。每种算法都有其特点和适用范围,可以根据具体问题选择合适的回归算法进行建模和预测。在实际应用中,还可以结合特征工程、模型评估和调参等技巧进一步优化回归模型的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2777829.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

一个坐标系查询网站python获取所有坐标系

技术路线选择 我是使用的vue 3开发的网页界面,element-plus构建网页组件,openlayer展示地图,express提供后端API,vercel进行在线部署。 python获取所有坐标系 想要展示所有坐标系,那需要先获取坐标系,怎么…

Openwifi 开源项目解读(一)

Openwifi 是一个关于wifi 系统的开源项目,是一个少有的优秀的关于wifi的开源项目,项目中包括了wifi的基带、lowmac、linux驱动 等三部分,其中基带、lowmac部分是在FPGA中实现,wifi驱动部分是运行在Linux下,因此openwif…

【资料分享】基于单片机大气压监测报警系统电路方案设计、基于飞思卡尔的无人坚守点滴监控自动控制系统设计(程序,原理图,pcb,文档)

基于单片机大气压监测报警系统电路方案设计 功能:实现的是大气压检测报警系统,可以通过传感器实时检测当前大气压值,可以设定大气压正常范围,当超过设定范围进行报警提示。 资料:protues仿真,程序&#x…

【教学类-47-01】UIBOT+IDM下载儿童古诗+修改文件名

背景需求: 去年12月,我去了其他幼儿园参观,这是一个传统文化德育教育特色的学校,在“古典集市”展示活动中,小班中班大班孩子共同现场念诵《元日》《静夜思》包含了演唱版本和儿歌念诵版本。 我马上也要当班主任了&a…

C++ 贪心 区间问题 最大不相交区间数

给定 N 个闭区间 [ai,bi] ,请你在数轴上选择若干区间,使得选中的区间之间互不相交(包括端点)。 输出可选取区间的最大数量。 输入格式 第一行包含整数 N ,表示区间数。 接下来 N 行,每行包含两个整数 ai…

基于鲲鹏服务NodeJs安装

准备工作 查看当前环境 uname -a查看鲲鹏云CPU架构 cat /proc/cpuinfo# 查看CPU architecture项,8表示v8,7表示v7下载Node.js NodeJs 选择 Linux Binaries (ARM) ARMv8 wget -c https://nodejs.org/dist/v12.18.3/node-v12.18.3-linux-arm64.tar.xz…

WWW 万维网

万维网概述 万维网 WWW (World Wide Web) 并非某种特殊的计算机网络。 万维网是一个大规模的、联机式的信息储藏所。 万维网用链接的方法能非常方便地从互联网上的一个站点访问另一个站点,从而主动地按需获取丰富的信息。 这种访问方式称为“链接”。 万维网是分…

【Kubernetes】在k8s1.24及以上版本基于containerd容器运行时测试pod从harbor拉取镜像

基于containerd容器运行时测试pod从harbor拉取镜像 1、安装高版本containerd2、安装docker3、登录harbor上传镜像4、从harbor拉取镜像 1、安装高版本containerd 集群中各个节点都要操作 yum remove containerd.io -y yum install containerd.io-1.6.22* -y cd /etc/containe…

Docker 有哪些常见的用途?

Docker 是一种容器化技术,它允许应用程序在不同的环境之间具有一致的运行环境。这使得 Docker 在开发和运维领域中非常受欢迎,因为它简化了应用程序的部署和管理。以下是 Docker 的一些常见用途: 快速部署应用程序 Docker 允许开发人员和运…

[NSSCTF]-Web:[SWPUCTF 2021 新生赛]easy_sql解析

查看网页 有提示,参数是wllm,并且要我们输入点东西 所以,我们尝试以get方式传入 有回显,但似乎没啥用 从上图看应该是字符型漏洞,单引号字符注入 先查看字段数 /?wllm2order by 3-- 没回显 报错了,说明…

Java编程构建高效二手交易平台

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

Habitat环境学习四:Habitat-sim基础用于导航——使用导航网格NavMesh

如何使用导航网格NavMesh 官方教程1、NavMesh基础定义1.1 使用NavMesh的原因1.2 什么是NavMesh 2、NavMesh的使用方法2.1 获取自上而下Top down view视角地图2.2 在NavMesh中进行查询以及随机产生可导航点2.3 查找最短路径2.4 场景加载NavMesh2.5 重新计算并生成NavMesh2.6 什么…

无题2024

念旧 阿悠悠 专辑:念旧 发行时间 2019-08-25 念旧 播报编辑讨论1上传视频 阿悠悠演唱歌曲 《念旧》是由一博作词,一博和张池作曲,阿悠悠演唱的歌曲,发行于2019年8月25日。 [1]收录于同名专辑《念旧》中。 相关星图 查…

立体感十足的地图组件,如何设计出来的?

以下是一些设计可视化界面中的地图组件更具备立体感的建议: 使用渐变色: 可以使用不同的渐变色来表现地图的高低差异,例如使用深蓝色或深紫色来表示海底,使用浅绿色或黄色来表示低地,使用橙色或红色来表示高地。 添加…

电商商城系统网站

文章目录 电商商城系统网站一、项目演示二、项目介绍三、系统部分功能截图四、部分代码展示五、底部获取项目(9.9¥带走) 电商商城系统网站 一、项目演示 商城系统 二、项目介绍 基于SpringBootVue的前后端分离商城系统网站 运行环境:idea或…

【Java多线程案例】实现阻塞队列

1. 阻塞队列简介 1.1 阻塞队列概念 阻塞队列:是一种特殊的队列,具有队列"先进先出"的特性,同时相较于普通队列,阻塞队列是线程安全的,并且带有阻塞功能,表现形式如下: 当队列满时&…

【C++第二阶段】运算符重载-【+】【cout】【++|--】

你好你好! 以下内容仅为当前认识,可能有不足之处,欢迎讨论! 文章目录 运算符重载加法运算符重载重载左移运算符递增|减运算符重载 运算符重载 加法运算符重载 What 普通的加减乘除,只能应付C中已给定的数据类型的运…

Java SE多态

文章目录 1.多态:1.1.什么是多态:1.2.多态实现条件:1.2.1.重写:1.2.2.向上转型: 1.多态: 1.1.什么是多态: 多态的概念:通俗来说,就是多种形态,具体点就是去…

分享76个表单按钮JS特效,总有一款适合您

分享76个表单按钮JS特效,总有一款适合您 76个表单按钮JS特效下载链接:https://pan.baidu.com/s/1CW9aoh23UIwj9zdJGNVb5w?pwd8888 提取码:8888 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集…

【开源】JAVA+Vue+SpringBoot实现实验室耗材管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 耗材档案模块2.2 耗材入库模块2.3 耗材出库模块2.4 耗材申请模块2.5 耗材审核模块 三、系统展示四、核心代码4.1 查询耗材品类4.2 查询资产出库清单4.3 资产出库4.4 查询入库单4.5 资产入库 五、免责说明 一、摘要 1.1…