伯克利研究院推出Ghostbuster用于检测由LLM代笔的文本

Ghostbuster的架构,用于检测人工智能生成文本的最先进的新方法

像 ChatGPT 这样的大型语言模型写得非常好,但事实上,它们已经成为一个棘手的问题。学生们已经开始使用这些模型代写作业,导致一些学校禁止 ChatGPT。此外,这些模型也容易产生带有事实错误的文本,因此谨慎的读者可能想知道生成人工智能工具是否被用来代写新闻文章或其他来源,然后再相信它们。

教师和读者可以做些什么以应对?现有的检测人工智能生成文本的工具有时在处理与训练数据不同的数据时表现不佳。此外,如果这些模型错误地将真实的人类写作归类为人工智能生成的,它们可能会危及那些真实作品受到质疑的学生。

Ghostbuster,这是一种检测人工智能生成文本的最先进的方法。Ghostbuster 的工作原理是在几个较弱的语言模型下找到在文档中生成每个标记的概率,然后根据这些概率组合函数作为最终分类器的输入。Ghostbuster 不需要知道使用什么模型来生成文档,也不需要知道在该特定模型下生成文档的概率。这一特性使 Ghostbuster 对于检测可能由未知模型或黑盒模型生成的文本特别有用,例如流行的商业模型 ChatGPT 和 Claude,这些模型的概率不可用。我们特别感兴趣的是确保Ghostbuster 能够很好地概括,因此我们评估了文本生成的一系列方式,包括不同的领域(使用新收集的论文、新闻和故事数据集)、语言模型或提示。

人工创作和 AI 生成的文本示例

为什么采用这种方法

目前许多人工智能生成的文本检测系统很难对不同类型的文本进行分类(例如,不同的写作风格,或不同的文本生成模型或提示)。仅使用困惑的简单模型通常无法捕获更复杂的特征,并且在新的写作领域中表现尤其差。事实上,我们发现,在某些领域,包括非英语母语人士的数据,仅困惑的基线比随机基线更糟糕。同时,基于大型语言模型(如 RoBERTa)的分类器很容易捕获复杂的特征,但对训练数据拟合过度且泛化效果不佳:我们发现 RoBERTa 基线具有灾难性的最坏情况泛化性能,有时甚至比仅困惑的基线更差。零样本方法在不对标记数据进行训练的情况下,通过计算文本由特定模型生成的概率来对文本进行分类,当实际使用不同的模型生成文本时,也往往表现不佳。

Ghostbuster 的工作原理

Ghostbuster 使用三个阶段的训练过程:计算概率、选择特征、 和分类器训练。

计算概率:我们通过计算在一系列较弱的语言模型(一个单元模型、一个三元模型和两个非指令调优的 GPT-3 模型,ada 和 davinci)下生成文档中每个单词的概率,将每个文档转换为一系列向量。

选择特征:我们使用结构化搜索程序来选择特征,其工作原理是 (1) 定义一组组合概率的向量和标量运算,以及 (2) 使用正向特征选择搜索这些操作的有用组合,重复添加最佳剩余特征。

分类器训练:我们根据基于概率的最佳特征和一些额外的手动选择特征训练线性分类器

结果

当在同一领域进行训练和测试时,Ghostbuster 在所有三个数据集中都取得了 99.0 F1,比 GPTZero 高出 5.9 F1,比 DetectGPT 高出 41.6 F1。在域外,Ghostbuster 在所有条件下的平均 F1 为 97.0,比 DetectGPT 高出 39.6 F1,比 GPTZero 高出 7.5 F1。当在所有数据集上进行域内评估时,我们的 RoBERTa 基线达到了 98.1 F1,但其泛化性能不一致。Ghostbuster 在除创意写作领域外的所有领域都优于 RoBERTa 基线,并且平均而言,域外表现比 RoBERTa 好得多(13.8 F1 利润率)。

 

关于 Ghostbuster 域内和域外性能的结果

为了确保 Ghostbuster 对用户提示模型的一系列方式(例如请求不同的写作风格或阅读水平)具有鲁棒性,我们评估了 Ghostbuster 对几种提示变体的鲁棒性。Ghostbuster 以 99.5 F1 的成绩超越了这些提示变体的所有其他测试方法。为了测试跨模型的泛化性,我们评估了 Claude 生成的文本的性能,其中 Ghostbuster 的性能也优于所有其他测试方法的 92.2 F1。

AI 生成的文本检测器通过轻微编辑生成的文本而被愚弄。我们研究了 Ghostbuster 对编辑的鲁棒性,例如交换句子或段落、重新排序字符或用同义词替换单词。句子或段落级别的大多数更改不会显着影响性能,但如果通过重复释义、使用商业检测规避器(如 Undetectable AI)或进行大量单词或字符级别的更改来编辑文本,则性能会平稳下降。在较长的文档上,性能也最好。

由于人工智能生成的文本检测器可能会将非英语母语人士的文本错误地归类为人工智能生成的文本,因此我们评估了 Ghostbuster  在非英语母语人士写作方面的表现。所有测试的模型在三个测试数据集中的两个数据集上的准确率都超过95%,但在第三组较短的论文中表现更差。然而,文档长度可能是这里的主要因素,因为 Ghostbuster 在这些文档(74.7 F1)上的表现几乎与在类似长度的其他域外文档(75.6到93.1 F1)上的表现一样好。

希望将 Ghostbuster 应用于文本生成可能被禁止使用的真实案例(例如,ChatGPT 撰写的学生论文)的用户应注意,较短的文本、与 Ghostbuster 训练的领域相去甚远的领域(例如,不同种类的英语)、非英语母语人士的文本、人工编辑的模型生成或通过提示 AI 模型修改人类创作的输入生成的文本更有可能出现错误。为了避免算法上的危害,我们强烈反对在没有人工监督的情况下自动惩罚涉嫌使用文本生成的行为。相反,如果将某人的写作归类为 AI 生成可能会伤害他们,我们建议谨慎地、人机交互地使用 Ghostbuster 。Ghostbuster 还可以帮助处理各种低风险应用程序,包括从语言模型训练数据中过滤 AI 生成的文本,并检查在线信息源是否是 AI 生成的。

结论

Ghostbuster 是一种最先进的 AI 生成的文本检测模型,在测试领域中具有 99.0 F1 性能,与现有模型相比取得了实质性进展。它可以很好地泛化到不同的领域、提示和模型,并且非常适合从黑盒或未知模型中识别文本,因为它不需要访问用于生成文档的特定模型的概率。

Ghostbuster 的未来方向包括为模型决策提供解释,并提高对专门试图欺骗探测器的攻击的鲁棒性。人工智能生成的文本检测方法也可以与水印等替代方案一起使用。我们还希望 Ghostbuster 能够在各种应用程序中提供帮助,例如过滤语言模型训练数据或在网络上标记 AI 生成的内容。

源码:https://github.com/vivek3141/ghostbuster

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2775705.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

RocketMQ客户端实现多种功能

目录 RocketMQ客户端基本流程 消息确认机制 1、消息生产端采用消息确认加多次重试的机制保证消息正常发送到RocketMQ 单向发送 同步发送 异步发送 2、消息消费者端采用状态确认机制保证消费者一定能正常处理对应的消息 3、消费者也可以自行指定起始消费位点 广播消息 …

在Visual Studio中引用和链接OpenSceneGraph (OSG) 库

在Visual Studio中引用和链接OpenSceneGraph (OSG) 库,按照以下步骤操作: 构建或安装OSG库 下载OpenSceneGraph源代码(如3.0版本)并解压。使用CMake配置项目,为Visual Studio生成解决方案文件。通常您需要设置CMake中的…

UE4运用C++和框架开发坦克大战教程笔记(十八)(第55~57集)

UE4运用C和框架开发坦克大战教程笔记(十八)(第55~57集) 55. UI 进入退出动画HideOther 面板出现时隐藏其他面板添加面板出现和收起的动画效果编写遮罩管理器前的准备 56. 弹窗进入界面57. UI 显示隐藏与遮罩转移完善遮罩管理器 55…

包装效果图为何要用云渲染100?渲染100邀请码1a12

包装效果图能吸引用户注意力,提升销量,随着技术的发展,越来越多的设计师开始使用云渲染来处理效果图,云渲染有什么优势呢?以渲染100为例我来说下。 1、节省时间和成本 渲染100拥有超过10万台的高性能渲染节点&#x…

疑似针对安全研究人员的窃密与勒索

前言 笔者在某国外开源样本沙箱平台闲逛的时候,发现了一个有趣的样本,该样本伪装成安全研究人员经常使用的某个渗透测试工具的破解版压缩包,对安全研究人员进行窃密与勒索双重攻击,这种双重攻击的方式也是勒索病毒黑客组织常用的…

关节点检测

https://www.bilibili.com/video/BV19g4y1777q/?p2&spm_id_frompageDriver 关节点检测全流程 YOLO:单阶段,快; MMPose:双阶段,准; 标注工具Labelme 用Labelme标注样本数据集

停车场|基于Springboot的停车场管理系统设计与实现(源码+数据库+文档)

停车场管理系统目录 目录 基于Springboot的停车场管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、管理员功能实现 (1)车位管理 (2)车位预订管理 (3)公告管理 (4&#…

AVR 328pb ADC基本介绍和使用

AVR 328pb ADC基本介绍和使用 📍结合参考同架构lgt8f328p中文文档:http://www.prodesign.com.cn/wp-content/uploads/2023/03/LGT8FX8P_databook_v1.0.4.pdf 📘328pb ADC特性 • 10-bit Resolution 10位分辨率 • 0.5 LSB Integral Non-lin…

Java stream 流的基本使用

Java stream 的基本使用 package com.zhong.streamdemo.usestreamdemo;import jdk.jfr.DataAmount; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;import java.util.ArrayList; import java.util.Comparator; import java.util.Li…

LabVIEW网络测控系统

LabVIEW网络测控系统 介绍了基于LabVIEW的网络测控系统的开发与应用,通过网络技术实现了远程的数据采集、监控和控制。系统采用LabVIEW软件与网络通信技术相结合,提高了系统的灵活性和扩展性,适用于各种工业和科研领域的远程测控需求。 随着…

基于微信小程序的新生报到系统的研究与实现,附源码

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

【Linux】Shell编程

Shell编程 目录 Shell编程1.shell基础1.输入重定向 & 输出重定向2.管道3.特殊字符(3.1)通配符(3.2)引号(3.3)注释符(#) 4.别名5.命令历史history 2.Shell脚本Shell脚本的执行方式(1)为脚本文件加上可执行权限,然后在命令行直接输入shell脚本文件名执行。(2)sh shell脚本名(…

基于Robei EDA--实现串口通信

一、串口简介 串口作为常用的三大低速总线(UART、SPI、IIC)之一,在设计众多通信接口和调试时占有重要地位。但UART和SPI、IIC不同的是,它是异步通信接口,异步通信中的接收方并不知道数据什么时候会到达,所…

深度优先搜索(DFS)与广度优先搜索(BFS):探索图与树的算法

一、引言 在图论和树形结构中,搜索算法是寻找从起点到终点的路径的关键。其中,深度优先搜索(DFS)和广度优先搜索(BFS)是最常用且最基础的两种搜索算法。本文将详细介绍广度优先搜索(BFS&#xf…

C#上位机与三菱PLC的通信03--MC协议之A-1E报文解析

1、MC协议帧 MC协议可以在串口通信,也可以在以太网通信,有A-1E和Qna-3E两种模式,这两种都是三菱PLC通信协议中比较常用的两种,一般我们使用比较多的是以太网通信,对于FX5U系列/Q系列/Qna系列/L系列的PLC,…

目标检测 | 卷积神经网络(CNN)详细介绍及其原理详解

前言:Hello大家好,我是小哥谈。卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要用于图像识别和计算机视觉任务。它的设计灵感来自于生物学中视觉皮层的工作原理。CNN的核心思想是通…

Stable Diffusion教程——使用TensorRT GPU加速提升Stable Diffusion出图速度

概述 Diffusion 模型在生成图像时最大的瓶颈是速度过慢的问题。为了解决这个问题,Stable Diffusion 采用了多种方式来加速图像生成,使得实时图像生成成为可能。最核心的加速是Stable Diffusion 使用了编码器将图像从原始的 3512512 大小转换为更小的 46…

Leetcode刷题笔记题解(C++):面试题 08.07. 无重复字符串的排列组合

思路:因为字符之间互不相同,故使用全排列的方式去解题; 字符串长度为n,将第一个字母分别与后面每一个字母进行交换,生成n种不同的全排列;再用第二个元素与后面每一个元素进行交换,生成n - 1种不…

Transformer的PyTorch实现之若干问题探讨(一)

《Transformer的PyTorch实现》这篇博文以一个机器翻译任务非常优雅简介的阐述了Transformer结构。在阅读时存在一些小困惑,此处权当一个记录。 1.自定义数据中enc_input、dec_input及dec_output的区别 博文中给出了两对德语翻译成英语的例子: # S: de…

《PCI Express体系结构导读》随记 —— 第II篇 第4章 PCIe总线概述(10)

接前一篇文章:《PCI Express体系结构导读》随记 —— 第II篇 第4章 PCIe总线概述(9) 4.2 PCIe体系结构的组成部件 PCIe总线作为处理器系统的局部总线,其作用与PCI总线类似,主要目的是为了连接处理器系统中的外部设备&…