MATLAB环境下基于深层小波时间散射网络的ECG信号分类

2012年,法国工程学院院士Mallat教授深受深度学习结构框架思想的启发,提出了基于小波变换的小波时间散射网络,并以此构造了小波时间散射网络。

小波时间散射网络的结构类似于深度卷积神经网络,不同的是其滤波器是预先确定好的小波滤波器,小波滤波器的参数不需要通过训练样本学习得到,因此其网络是非反馈式的。信号通过计算半离散小波变换,再通过非线性取模操作,得到的信号特征表达具有平移不变性、形变稳定性等优良特性,正好满足机器学习中对特征提取器的基本要求。此外,这些基本性质在数学上得到了严格的理论证明,弥补了卷积神经网络缺乏理论支撑的不足。经过实验证明,小波时间散射网络在手写体识别、纹理和音频分类任务中取得了突出的分类效果,尤其在小样本的情况下,相较于深度卷积神经网络获得较小的分类错误率,因此小波时间散射网络具有一定的优势以及研究意义。

关于小波时间散射网络,可以参考如下文献:

[1]Rezazadeh N ,Oliveira D M ,Perfetto D , et al.Classification of Unbalanced and Bowed Rotors under Uncertainty Using Wavelet Time Scattering, LSTM, and SVM[J].Applied Sciences,2023,13(12):

[2]Engineering; Findings from Vytautas Magnus University Yields New Data on Engineering (Detection of Speech Impairments Using Cepstrum, Auditory Spectrogram and Wavelet Time Scattering Domain Features)[J].Journal of Engineering,2020.

[3]Wavelet Time Scattering Based Classification of Interictal and Preictal EEG Signals[J].Journal of Brain Research,2020,3(3):1-9.

[4]Lauraitis A ,Maskeliūnas R ,Damaševičius R , et al.Detection of Speech Impairments Using Cepstrum, Auditory Spectrogram and Wavelet Time Scattering Domain Features[J].IEEE Access,2020,896162-96172.

代码为基于深层小波时间散射的ECG信号分类模型,运行环境为MATLAB R2021B,主要讲解如何使用小波时间散射网络和支持向量机分类器对人体心电图 (ECG)信号进行分类。在小波散射中,数据通过一系列的小波变换、非线性化和平均化过程,以产生时间序列的低方差表示。小波时间散射产生了对输入信号微小变化不敏感的信号表示,而几乎不会影响到分类准确率,使用的数据从 PhysioNet公开获得。

代码使用从3种 ECG 数据:心律失常数据、充血性心力衰竭数据和正常窦性心律数据,共使用来自3个 PhysioNet 数据库的162条ECG 记录:MIT-BIH心律失常数据库、MIT-BIH正常窦性心律数据库和BIDMC充血性心力衰竭数据库。 共有96个心律失常患者的信号,30个充血性心力衰竭患者的信号,以及36个正常窦性心律患者的信号,目标就是训练分类器来区分心律失常 (ARR)、充血性心力衰竭 (CHF)和正常窦性心律 (NSR)3类信号。

出图如下:

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任
《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家,担任《计算机科学》,《电子器件》 , 《现代制造过程》 ,《电源学报》,《船舶工程》 ,《轴承》 ,《工矿自动化》 ,《重庆理工大学学报》 ,《噪声与振动控制》 ,《机械传动》 ,《机械强度》 ,《机械科学与技术》 ,《机床与液压》,《声学技术》,《应用声学》,《石油机械》,《西安工业大学学报》等中文核心审稿专家。
擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2775420.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

DMA直接内存访问,STM32实现高速数据传输使用配置

1、DMA运用场景 随着智能化、信息化的不断推进,嵌入式设备的数据处理量也呈现指数级增加,因此对于巨大的数据量处理的情况时,必须采取其它的方式去替CPU减负,以保证嵌入式设备性能。例如SD卡存储器和音视频、网络高速通信等其它情…

Vue中 常用的修饰符有哪些

Vue是一款建立在JavaScript框架上的开源前端库,已经成为当今前端开发人员最喜爱的选择之一。它的简洁语法和强大的功能使得开发者可以轻松地构建交互性的网页应用程序。在Vue中,修饰符是一个重要的概念,它们可以帮助我们更好地控制和定制DOM元…

【数据结构】二叉树的顺序结构及链式结构

目录 1.树的概念及结构 1.1树的概念 1.2树的相关概念 ​编辑 1.3树的表示 1.4树在实际中的运用(表示文件系统的目录树结构) 2.二叉树概念及结构 2.1二叉树的概念 2.2现实中的二叉树 ​编辑 2.3特殊的二叉树 2.4二叉树的性质 2.5二叉树的存储结…

c++新特性override和final

override 作用: 在子类中重写父类的虚函数,我们可以在子类的虚函数声明后加上override。 上图就在重写eat()的时候,加上override。 作用: 1. 可以提示读者,这个函数是重写自父类中的。 2. 加上override之后,我们在重…

数据库管理-第148期 最强Oracle监控EMCC深入使用-05(20240208)

数据库管理148期 2024-02-08 数据库管理-第148期 最强Oracle监控EMCC深入使用-05(20240208)1 性能主页2 ADDM Spotlight3 实时ADDM4 数据库的其他5 主机总结 数据库管理-第148期 最强Oracle监控EMCC深入使用-05(20240208) 作者&am…

实例分割论文阅读之:FCN:《Fully Convolutional Networks for Semantica Segmentation》

论文地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf 代码链接:https://github.com/pytorch/vision 摘要 卷积网络是强大的视觉模型,可以产生特征层次结构。我们证明&#xff0c…

Python解决SSL不可用问题

参考:https://blog.csdn.net/weixin_44894162/article/details/126342591 一、问题描述: 报错概述: WARNING: pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available. ## 警告:pip配…

Project 2019下载安装教程,保姆级教程,附安装包和工具

前言 Project是一款项目管理软件,不仅可以快速、准确地创建项目计划,而且可以帮助项目经理实现项目进度、成本的控制、分析和预测,使项目工期大大缩短,资源得到有效利用,提高经济效益。软件设计目的在于协助专案经理发…

ubuntu原始套接字多线程负载均衡

原始套接字多线程负载均衡是一种在网络编程中常见的技术,特别是在高性能网络应用或网络安全工具中。这种技术允许应用程序在多个线程之间有效地分配和处理网络流量,提高系统的并发性能。以下是关于原始套接字多线程负载均衡技术的一些介绍: …

交通 | 共乘出行(下):基于图结构的动态多时空供需网络的均衡度量方法

博客:Alex Chin, & Tony Qin. (2023.02.25). Quantifying Efficiency in Ridesharing Marketplaces. Link: https://eng.lyft.com/quantifying-efficiency-in-ridesharing-marketplaces-affd53043db2 论文:Chin, Alex, and Zhiwei Qin. “A Unified…

Springboot根据环境读取application配置文件

目录 1. 首先创建两个不同配置文件 2. pom.xml 配置文件 3. 指定环境 4. 最后启动测试 1. 首先创建两个不同配置文件 分别为开发环境和生产环境 application-dev.properties 和 application-prod.properties application-dev.properties 配置为 1931 端口 application-pro…

CAN通讯协议详解

阅读引言: 本篇博文想给需要的人介绍一下CAN总线, 这个也算是我从B站学习记得笔记分享吧也算是。简单的介绍了CAN总线的大致内容, 简述支持CAN功能的STM32的简单使用例程。本视频的中的图片内容均来自B站爱上半导体博主的内容。 CAN高质量教学…

问题:在填制记账凭时,应注意以下几个方面:( ) #知识分享#其他

问题:在填制记账凭时,应注意以下几个方面:( ) A:记账凭证各项内容必须完整 B:必须以审核无误的原始凭证为依据 C:记账凭证应连续编号 D:记账凭证的书写应清楚、规范。 参考答案如图所示

C++算法之双指针、BFS和图论

一、双指针 1.AcWing 1238.日志统计 分析思路 前一区间和后一区间有大部分是存在重复的 我们要做的就是利用这部分 来缩短我们查询的时间 并且在使用双指针时要注意对所有的博客记录按时间从小到大先排好顺序 因为在有序的区间内才能使用双指针记录两个区间相差 相当于把一个…

Leecode之随机链表的复制

一.题目及剖析 https://leetcode.cn/problems/copy-list-with-random-pointer/ 这个题目的意思就是拷贝一份复杂链表,难点在于它的random指针所指向的空间与拷贝下来的链表之间缺少一种联系,当然可以用遍历链表的方式通过value去找那块空间,不过时间复杂度太高. 二.思路引入 …

Redis Centos7 安装到启动

文章目录 安装Redis启动redis查看redis状况连接redis服务端 安装Redis 1.下载scl源 yum install centos-release-scl-rh2.下载redis yum install rh-redis5-redis 3. 创建软连接 1.cd /usr/bin 2. In -s /opt/rh/rh-redis5/root/usr/bin/redis-server ./redis-server 3. …

Ajax+JSON学习一

AjaxJSON学习一 文章目录 前言一、Ajax简介1.1. Ajax基础1.2. 同源策略 二、Ajax的核心技术2.1. XMLHttpRequest 类2.2. open指定请求2.3. setRequestHeader 设置请求头2.4. send发送请求主体2.5. Ajax取得响应 总结 前言 一、Ajax简介 1.1. Ajax基础 Ajax 的全称是 Asynchron…

雾计算:去中心化计算的未来之旅

雾计算是去中心化计算的基石,它将重塑我们的数字格局。通过使计算和存储更接近数据源,它改变了我们处理物联网生成数据的方式。通过雾计算探索未来,揭示了减少延迟、增强隐私和高效网络利用等好处。 随着传感器和可穿戴设备等物联网设备的数…

5.常量和数据类型(数字类型,字符串类型,模板字符串,布尔类型undefined,null检测数据类型),类型转化

什么是常量 常量就是不能改变的量&#xff0c;就是向计算机内存要一款空间然后存储的东西不能改变用const声明并且一定要初始化值 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-C…

基于LightGBM的回归任务案例

在本文中&#xff0c;我们将学习先进的机器学习模型之一&#xff1a;Lightgbm。在对XGB模型进行了越来越多的改进以获得更好的性能之后&#xff0c;XGBoost是一种极限梯度提升机器&#xff0c;但通过lightgbm&#xff0c;我们可以在没有太多计算的情况下实现类似或更好的结果&a…