学习笔记——ENM模拟

学习笔记——ENM模拟

文章目录

  • 前言
  • 一、文献一
    • 1. 材料与方法
      • 1.1. 大致概念
      • 1.2. 生态模型的构建
        • 1.2.1. 数据来源:
        • 1.2.2. 数据处理:
        • 1.2.3. 模型参数优化:
      • 1.3. 适生情况预测
        • 1.3.1. 预测模型构建
        • 1.3.2. 适生区划分
      • 1.4. 模型的评估与验证
    • 2. 结果与分析
      • 2.1. 预测模型的构建
      • 2.2. 潜在的适生分布预测
      • 2.3. 生态模型的评估与验证


前言

学习文献里的方法,初步了解一下什么是ENM模拟

文献名称:
《基于MaxEnt模型和ArcGIS预测多肋藻在中国海域的适生分布特征》


一、文献一

1. 材料与方法

1.1. 大致概念

本研究采用MaxEnt 模型预测多肋藻在我国的适生情况, 并探究不同因子对多肋藻孢子体生长的影响,旨在为开展多肋藻栽培提供支撑。


关键词: 多肋藻; MaxEnt; ArcGIS; 生态风险; 适生分布


物种分布模型(species distribution model, SDM)
主要是根据物种特定的生存环境及存在的分布位点, 通过模型的数学算法模拟出其基本生态位, 可解释为物种出现的概率分布或生境适宜度等。

目前应用较广的 SDM有 BIOCLIM、CLIMEX、DOMAIN、GAM、GARP、MaxEnt、ENFA 等。


MaxEnt (maximum entropy)模型
是基于最大熵理论, 即假设物种在没有约束的情况下, 会尽最大可能扩散蔓延, 接近均匀分布。最大熵模型以物种仅存在分布信息及相关环境因子信息, 依靠数学模型来推算物种的生态需求, 并模拟物种在目标区域的适生概率。


1.2. 生态模型的构建

所采用的生态位预测模型为最大熵模型MaxEnt 3.4, 运用 ArcGIS 10.2 划分适生区

1.2.1. 数据来源:

物种分布数据
分布信息来源: 全球生物多样性信息网络 GBIF (https://www.gbif.org/zh/)和文献资料, 选取明确位置的分布点, 并通过地名数据库 GNDB(https://dmfw.mca.gov.cn/index.html)查验经纬度坐标信息。

最后整理成物种名–经度–纬度形式, 保存为*.CSV 格式文件


环境变量数据

来源于全球海洋生物扩散模型环境数据库 Bio-ORICLE (https://bio-oracle.org/)中基于 2000─2014 年期间月平均值的气候数据编制的图层, 其空间分辨率为 5 arcmin (约为9.2 km), 下载格式为*.asc 格式。选择影响海洋藻类分布的 42 项环境参数。

在这里插入图片描述


地图数据

选用 1∶400 万中国省级行政区图作为分析地图, 从国家基础地理信息系统网站(http://www.ngcc.cn/ngcc/)下载

推荐文章:
国家基础地理信息中心行政边界等矢量数据免费下载保姆级教程–关于地理数据收集与处理的基本工具推荐(7)


1.2.2. 数据处理:

分布数据的空间过滤

物种分布点的数据通过 Excel 删除重复点后, 将剩余分布位点导入 ArcGIS 中, 通过投影工具, 对分布点建立以 m 为单位的坐标系, 并以每个分布点为中心, 建立半径为 5 km 的圆型区域进行邻域分析,
删去重叠交叉的分布簌, 随机保留其中一个位点, 将最终保留下的分布点数据用于模型构建。


环境变量的相关性检验与筛选

在这里插入图片描述

下载ArcGIS软件:

https://zhuanlan.zhihu.com/p/670775519

在这里插入图片描述

下载 MaxEnt软件:

http://lucky-boy.ysepan.com/
(注意:这个网站有许多生物信息学相关资源。强烈推荐)

在这里插入图片描述

1.2.3. 模型参数优化:

正则化参数的优化

在这里插入图片描述


(训练集 : 测试集)比值的优化

设置 4 组训练集与测试集组合(50 : 50、70 : 30、75 : 25、80 : 20),
正则化参数取上述 8 组不同系数经 5–折交叉验证
后的最佳 β 值, 环境变量同上筛选, 并选择
随机种子设置, 其余参数为系统默认值, 每组重复
运行 10 次, 比较各组的平均测试 AUC 值, 选择最
高 AUC 值的训练集: 测试集组合用于模型构建


1.3. 适生情况预测

多肋藻在我国适生情况预测

1.3.1. 预测模型构建

将经 1.2.2处理的分布点、环境变量数据分别导入 MaxEnt 模型, 根据 1.2.3化结果设置正则化参数 β 以及训练集: 测试集参数, 构建环境变量响应曲线, 并采用刀切法检测环境变量的贡献值, 以 logistic 格式输出概率分布预测图。


1.3.2. 适生区划分

在这里插入图片描述

1.4. 模型的评估与验证

在这里插入图片描述

2. 结果与分析

结果与分析

2.1. 预测模型的构建


环境变量筛选


正则化参数的交叉验证和(训练集 : 测试
集)比值的筛选


2.2. 潜在的适生分布预测

2.3. 生态模型的评估与验证

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2774866.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

吉他学习:识谱,认识节奏,视唱节奏,节拍器的使用

第九课 识谱https://m.lizhiweike.com/lecture2/29362692 第十课 基础乐理(二)——节奏篇https://mp.csdn.net/mp_blog/creation/editor?spm1011.2124.3001.6192 第十一课 视唱节奏(一)https://m.lizhiweike.com/lecture2/293634…

【大模型上下文长度扩展】LongQLoRA:单GPU(V100)环境下的语言模型优化方案

LongQLoRA 核心问题子问题1: 预定义的上下文长度限制子问题2: 训练资源的需求高子问题3: 保持模型性能分析不足 LongQLoRA方法拆解子问题1: 上下文长度限制子问题2: 高GPU内存需求子问题3: 精确量化导致的性能损失分析不足效果 论文:https://arxiv.org/pdf/2311.048…

使用深度学习对视频进行分类

目录 加载预训练卷积网络 加载数据 将帧转换为特征向量 准备训练数据 创建 LSTM 网络 指定训练选项 训练 LSTM 网络 组合视频分类网络 使用新数据进行分类 辅助函数 此示例说明如何通过将预训练图像分类模型和 LSTM 网络相结合来创建视频分类网络。 要为视频…

Win32 SDK Gui编程系列之--创建菜单

菜单的概要在“Windows编程的基础”中提到了。在这里,对菜单的制作进行更详细的说明。 1.菜单的制作 菜单将数据设置在下面的MENUITEM结构中,用InsertMenuItem函数创建。 typedef struct tagMENUITEMINFO { fMask UINT cbSize;…

第十三、十四个知识点:用javascript获取表单的内容并加密

我们先来写一段代码&#xff1a; <body><form action"#" method"post">//写一个表单<span>用户名&#xff1a;</span><input type"text" id"username" name"username"><span>密码&a…

【代码随想录26】332.重新安排行程 51.N皇后 37.解数独

目录 332.重新安排行程题目描述参考代码 51.N皇后题目描述参考代码 37.解数独题目描述参考代码 332.重新安排行程 题目描述 给你一份航线列表 tickets &#xff0c;其中 tickets[i] [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。 所有这些机…

(力扣)1314.矩阵区域和

给你一个 m x n 的矩阵 mat 和一个整数 k &#xff0c;请你返回一个矩阵 answer &#xff0c;其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和&#xff1a; i - k < r < i k, j - k < c < j k 且(r, c) 在矩阵内。 示例 1&#xff1a; 输入&a…

权限控制系统设计与实践的经验总结

在现代应用开发中&#xff0c;权限控制是确保系统安全和数据保护的重要组成部分。本文将介绍权限控制系统的设计原则&#xff0c;并分享一些实践经验&#xff0c;帮助开发人员更好地设计和实现适合自己项目的权限控制系统。 1. 设计原则&#xff1a; - 最小权限原则&#x…

spring boot(2.4.x 开始)和spring cloud项目中配置文件application和bootstrap加载顺序

在前面的文章基础上 https://blog.csdn.net/zlpzlpzyd/article/details/136060312 spring boot 2.4.x 版本之前通过 ConfigFileApplicationListener 加载配置 https://github.com/spring-projects/spring-boot/blob/v2.3.12.RELEASE/spring-boot-project/spring-boot/src/mai…

小白都能看懂的力扣算法详解——链表(一)

&#xff01;&#xff01;本篇所选题目及解题思路均来自代码随想录 (programmercarl.com) 一 203.移除链表元素 题目要求&#xff1a;给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回新的头节点。 203.…

Android 识别车牌信息

打开我们心爱的Android Studio 导入需要的资源 gradle //开源车牌识别安卓SDK库implementation("com.github.HyperInspire:hyperlpr3-android-sdk:1.0.3")button.setOnClickListener(v -> {Log.d("Test", "");try (InputStream file getAs…

第二届 N1CTF Junior Crypto-junior RSA WP

题目&#xff1a; from Crypto.Util.number import * from secret import flagm bytes_to_long(flag)def gen(bits):while True:a getPrime(bits)b getPrime(bits)c getPrime(bits)p (a << (2*bits)) (b << bits) cq (c << (2*bits)) (a << …

免费文字转语音工具,一款优秀且永久免费的文字转语音工具,同时拥有多种类型男声女声,支持多国语言转换,支持语速调节和下载!

一、软件简介 该工具只有一个功能&#xff0c;就是将输入框内的纯文本内容转换为指定语言的音频&#xff0c;并且可以自由调节语速及音色&#xff08;男声/女声&#xff09;&#xff0c;其内置了多种语音包&#xff0c;包含男声、女声、普通话、粤语以及方言&#xff0c;并且支…

ctfshow-命令执行(web73-web77)

web73 用不了上一题的通用poc了 因为禁用了strlen 但是可以改一个函数自定义一个函数只要是能实现strlen效果即可 cvar_export(scandir(/));exit(0); 根目录下有一个flagc.txt文件 cinclude(/flagc.txt);exit(0); web74 禁用了scandir函数 那就使用web72的glob协议 查看目录下…

如何在vue中使用拖动排序组件sortablejs

效果图&#xff1a; 1.首先&#xff0c;我们需要在vue项目中安装依赖&#xff1a; npm install -save sortablejs2.创建demo文件>demoTest.vue&#xff0c;直接附上实例代码&#xff1a; <template><div><div id"table-names"><div class&…

c#: 表达式树的简化

环境&#xff1a; .net 6 一、问题&#xff1f; 有下面的表达式&#xff1a; var nums new List<int> { 1, 2, 3 }; Expression<Func<int, bool>> exp i > i > nums.Max();我们知道&#xff0c;它其实就是&#xff1a;exp i > i > 3; 那么…

『运维备忘录』之 Ansible 自动化运维工具

一、简介 Ansible是基于Python开发&#xff0c;集合了众多运维工具&#xff08;puppet、cfengine、chef、func、fabric&#xff09;的优点&#xff0c;实现了批量系统配置、批量程序部署、批量运行命令等功能的自动化运维工具&#xff0c;广泛用于配置管理、应用部署以及任务协…

ArcGIS学习(六)地理数据库

ArcGIS学习(六)地理数据库 上个任务我们讲了一个非常重要的知识点一一坐标系。这个任务我们带来另外一个很重要的知识点一一地理数据库。 地理数据库的内容相比于坐标系简单很多! 首先,先让我们来学习下地理数据库的理论。 ArcGIS 中的地理数据库(Geodatabase)是一个用…

牛客网SQL264:查询每个日期新用户的次日留存率

官网链接&#xff1a; 牛客每个人最近的登录日期(五)_牛客题霸_牛客网牛客每天有很多人登录&#xff0c;请你统计一下牛客每个日期新用户的次日留存率。 有一个登录(login。题目来自【牛客题霸】https://www.nowcoder.com/practice/ea0c56cd700344b590182aad03cc61b8?tpId82 …

25、数据结构/二叉树相关练习20240207

一、二叉树相关练习 请编程实现二叉树的操作 1.二叉树的创建 2.二叉树的先序遍历 3.二叉树的中序遍历 4.二叉树的后序遍历 5.二叉树各个节点度的个数 6.二叉树的深度 代码&#xff1a; #include<stdlib.h> #include<string.h> #include<stdio.h> ty…