代码随想录算法训练营第二十四天 |回溯算法基础知识,77.组合(已补充)

回溯算法理论基础(已观看)

带你学透回溯算法(理论篇)| 回溯法精讲!_哔哩哔哩_bilibili

#题目分类

什么是回溯法

溯法也可以叫做回溯搜索法,它是一种搜索的方式。

在二叉树系列中,我们已经不止一次,提到了回溯,例如二叉树:以为使用了递归,其实还隐藏着回溯(opens new window)。

回溯是递归的副产品,只要有递归就会有回溯。

所以以下讲解中,回溯函数也就是递归函数,指的都是一个函数

回溯法的效率

回溯法的性能如何呢,这里要和大家说清楚了,虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法

因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

那么既然回溯法并不高效为什么还要用它呢?

因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。

此时大家应该好奇了,都什么问题,这么牛逼,只能暴力搜索。

回溯法解决的问题

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

相信大家看着这些之后会发现,每个问题,都不简单!

另外,会有一些同学可能分不清什么是组合,什么是排列?

组合是不强调元素顺序的,排列是强调元素顺序

例如:{1, 2} 和 {2, 1} 在组合上,就是一个集合,因为不强调顺序,而要是排列的话,{1, 2} 和 {2, 1} 就是两个集合了。

记住组合无序,排列有序,就可以了。

如何理解回溯法

回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度

递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

这块可能初学者还不太理解,后面的回溯算法解决的所有题目中,我都会强调这一点并画图举相应的例子,现在有一个印象就行。

【重要】回溯法模板

这里给出Carl总结的回溯算法模板。

在讲二叉树的递归(opens new window)中我们说了递归三部曲,这里我再给大家列出回溯三部曲。

  • 回溯函数模板返回值以及参数

在回溯算法中,我的习惯是函数起名字为backtracking,这个起名大家随意。

回溯算法中函数返回值一般为void。

再来看一下参数,因为回溯算法需要的参数可不像二叉树递归的时候那么容易一次性确定下来,所以一般是先写逻辑,然后需要什么参数,就填什么参数。

但后面的回溯题目的讲解中,为了方便大家理解,我在一开始就帮大家把参数确定下来。

回溯函数伪代码如下:

void backtracking(参数)

  • 回溯函数终止条件

既然是树形结构,那么我们在讲解二叉树的递归(opens new window)的时候,就知道遍历树形结构一定要有终止条件。

所以回溯也有要终止条件。

什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。

所以回溯函数终止条件伪代码如下:

if (终止条件) {存放结果;return;
}

  • 回溯搜索的遍历过程

在上面我们提到了,回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。

如图:

注意图中,我特意举例集合大小和孩子的数量是相等的!

回溯函数遍历过程伪代码如下:

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果
}

for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。

backtracking这里自己调用自己,实现递归。

大家可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。

分析完过程,回溯算法模板框架如下:

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

这份模板很重要,后面做回溯法的题目都靠它了!

如果从来没有学过回溯算法的录友们,看到这里会有点懵,后面开始讲解具体题目的时候就会好一些了,已经做过回溯法题目的录友,看到这里应该会感同身受了。

总结

本篇我们讲解了,什么是回溯算法,知道了回溯和递归是相辅相成的。

接着提到了回溯法的效率,回溯法其实就是暴力查找,并不是什么高效的算法。

然后列出了回溯法可以解决几类问题,可以看出每一类问题都不简单。

最后我们讲到回溯法解决的问题都可以抽象为树形结构(N叉树),并给出了回溯法的模板。

今天是回溯算法的第一天,按照惯例Carl都是先概述一波,然后在开始讲解具体题目,没有接触过回溯法的同学刚学起来有点看不懂很正常,后面和具体题目结合起来会好一些。

77.组合(已观看)

1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

2、文章讲解:代码随想录

3、题目:

给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。

示例: 输入: n = 4, k = 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]

4、视频链接:

带你学透回溯算法-组合问题(对应力扣题目:77.组合)| 回溯法精讲!_哔哩哔哩_bilibili

5、思路:

本题是回溯法的经典题目。

直接的解法当然是使用for循环,例如示例中k为2,很容易想到 用两个for循环,这样就可以输出 和示例中一样的结果。

代码如下:

int n = 4;
for (int i = 1; i <= n; i++) {for (int j = i + 1; j <= n; j++) {cout << i << " " << j << endl;}
}

输入:n = 100, k = 3 那么就三层for循环,代码如下:

int n = 100;
for (int i = 1; i <= n; i++) {for (int j = i + 1; j <= n; j++) {for (int u = j + 1; u <= n; n++) {cout << i << " " << j << " " << u << endl;}}
}

如果n为100,k为50呢,那就50层for循环,是不是开始窒息

此时就会发现虽然想暴力搜索,但是用for循环嵌套连暴力都写不出来!

咋整?

回溯搜索法来了,虽然回溯法也是暴力,但至少能写出来,不像for循环嵌套k层让人绝望。

那么回溯法怎么暴力搜呢?

上面我们说了要解决 n为100,k为50的情况,暴力写法需要嵌套50层for循环,那么回溯法就用递归来解决嵌套层数的问题

递归来做层叠嵌套(可以理解是开k层for循环),每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题了

此时递归的层数大家应该知道了,例如:n为100,k为50的情况下,就是递归50层。

一些同学本来对递归就懵,回溯法中递归还要嵌套for循环,可能就直接晕倒了!

如果脑洞模拟回溯搜索的过程,绝对可以让人窒息,所以需要抽象图形结构来进一步理解。

我们在关于回溯算法,你该了解这些!(opens new window)中说到回溯法解决的问题都可以抽象为树形结构(N叉树),用树形结构来理解回溯就容易多了

那么我把组合问题抽象为如下树形结构:

可以看出这棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不再重复取。

第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围

图中可以发现n相当于树的宽度,k相当于树的深度

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

在关于回溯算法,你该了解这些!(opens new window)中我们提到了回溯法三部曲,那么我们按照回溯法三部曲开始正式讲解代码了。

回溯法三部曲

  • 递归函数的返回值以及参数

在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。

代码如下:

vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果

其实不定义这两个全局变量也是可以的,把这两个变量放进递归函数的参数里,但函数里参数太多影响可读性,所以我定义全局变量了。

函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。

然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。

为什么要有这个startIndex呢?

建议在77.组合视频讲解(opens new window)中,07:36的时候开始听,startIndex 就是防止出现重复的组合

从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。

所以需要startIndex来记录下一层递归,搜索的起始位置。

那么整体代码如下:

vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件单一结果
void backtracking(int n, int k, int startIndex)

  • 回溯函数终止条件

什么时候到达所谓的叶子节点了呢?

path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。

如图红色部分:

此时用result二维数组,把path保存起来,并终止本层递归。

所以终止条件代码如下:

if (path.size() == k) {result.push_back(path);return;
}

  • 单层搜索的过程

回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。

如此我们才遍历完图中的这棵树。

for循环每次从startIndex开始遍历,然后用path保存取到的节点i。

代码如下:

for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历path.push_back(i); // 处理节点backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始path.pop_back(); // 回溯,撤销处理的节点
}

可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。

backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

关键地方都讲完了,组合问题C++完整代码如下:

class Solution {
private:vector<vector<int>> result; // 存放符合条件结果的集合vector<int> path; // 用来存放符合条件结果void backtracking(int n, int k, int startIndex) {if (path.size() == k) {result.push_back(path);return;}for (int i = startIndex; i <= n; i++) {path.push_back(i); // 处理节点backtracking(n, k, i + 1); // 递归path.pop_back(); // 回溯,撤销处理的节点}}
public:vector<vector<int>> combine(int n, int k) {result.clear(); // 可以不写path.clear();   // 可以不写backtracking(n, k, 1);return result;}
};

  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

还记得我们在关于回溯算法,你该了解这些!(opens new window)中给出的回溯法模板么?

如下:

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

对比一下本题的代码,是不是发现有点像! 所以有了这个模板,就有解题的大体方向,不至于毫无头绪。

#总结

组合问题是回溯法解决的经典问题,我们开始的时候给大家列举一个很形象的例子,就是n为100,k为50的话,直接想法就需要50层for循环。

从而引出了回溯法就是解决这种k层for循环嵌套的问题。

然后进一步把回溯法的搜索过程抽象为树形结构,可以直观的看出搜索的过程。

接着用回溯法三部曲,逐步分析了函数参数、终止条件和单层搜索的过程。

剪枝优化

我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。

在遍历的过程中有如下代码:

for (int i = startIndex; i <= n; i++) {path.push_back(i);backtracking(n, k, i + 1);path.pop_back();
}

这个遍历的范围是可以剪枝优化的,怎么优化呢?

来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。

这么说有点抽象,如图所示:

图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。

所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了

注意代码中i,就是for循环里选择的起始位置。

for (int i = startIndex; i <= n; i++) {

接下来看一下优化过程如下:

  1. 已经选择的元素个数:path.size();
  2. 还需要的元素个数为: k - path.size();
  3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。

举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

从2开始搜索都是合理的,可以是组合[2, 3, 4]。

这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。

所以优化之后的for循环是:

for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置

优化后整体代码如下:

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(int n, int k, int startIndex) {if (path.size() == k) {result.push_back(path);return;}for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方path.push_back(i); // 处理节点backtracking(n, k, i + 1);path.pop_back(); // 回溯,撤销处理的节点}}
public:vector<vector<int>> combine(int n, int k) {backtracking(n, k, 1);return result;}
};

#剪枝总结

本篇我们准对求组合问题的回溯法代码做了剪枝优化,这个优化如果不画图的话,其实不好理解,也不好讲清楚。

所以我依然是把整个回溯过程抽象为一棵树形结构,然后可以直观的看出,剪枝究竟是剪的哪里。

class Solution {List<List<Integer>> result= new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> combine(int n, int k) {combineHelper(n, k, 1);return result;}public void combineHelper(int n,int k,int startIndex){if (path.size() == k){result.add(new ArrayList<>(path));return;}for (int i =startIndex;i<=n;i++){path.add(i);combineHelper(n,k,i+1);path.removeLast();}}
}
class Solution {List<List<Integer>> result = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> combine(int n, int k) {combineHelper(n, k, 1);return result;}/*** 每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠startIndex* @param startIndex 用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。*/public void combineHelper(int n, int k, int startIndex) {// 终止条件if (path.size() == k) {result.add(new ArrayList<>(path));return;}for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) {path.add(i);combineHelper(n, k, i + 1);path.removeLast();}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2774590.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

2022年通信工程师初级 实务 真题

文章目录 三、第3章 接入网&#xff0c;接入网的功能结构&#xff0c;无线频段及技术四、第4章 互联网&#xff0c;网络操作系统的功能&#xff0c;IP地址五、第6章 移动通信系统&#xff0c;FDD、TDD 三、第3章 接入网&#xff0c;接入网的功能结构&#xff0c;无线频段及技术…

numa网卡绑定

#概念 参考&#xff1a;https://www.jianshu.com/p/0f3b39a125eb(opens new window) chip&#xff1a;芯片&#xff0c;一个cpu芯片上可以包含多个cpu core&#xff0c;比如四核&#xff0c;表示一个chip里4个core。 socket&#xff1a;芯片插槽&#xff0c;颗&#xff0c;跟…

【Spring Boot】第二篇 自动装配原来就这么简单

导航 一. 什么是自动装配?二. 如何实现自动装配?1. 配置清单在哪里?2. 自动装配实现核心点1: 从META‐INF/spring.factories路径读取配置类清单核心点2: 过滤第一次过滤: 根据EnableAutoConfiguration注解中exclude和excludeName属性第二次过滤: 通过AutoConfigurationImpor…

Java实现网上药店系统 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 药品类型模块2.3 药品档案模块2.4 药品订单模块2.5 药品收藏模块2.6 药品资讯模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 角色表3.2.2 药品表3.2.3 药品订单表3.2.4 药品收藏表3.2.5 药品留言表…

【集合系列】LinkedHashMap 集合

LinkedHashMap集合 1. 概述2. 方法3. 遍历方式4. 代码示例5. 注意事项 其他集合类 祖父类 Map 父类 HashMap 集合类的遍历方式 具体信息请查看 API 帮助文档 1. 概述 LinkedHashMap 是 Java 中的一种特殊类型的 HashMap&#xff0c;它继承自 HashMap 类&#xff0c;并实现了…

免费:阿里云学生服务器领取申请(2024新版教程)

2024年阿里云学生服务器免费领取&#xff0c;先完成学生认证即可免费领取一台云服务器ECS&#xff0c;配置为2核2G、1M带宽、40G系统盘&#xff0c;在云服务器ECS实例过期之前&#xff0c;完成实验与认证任务&#xff0c;还可以免费续费6个月&#xff0c;阿里云百科aliyunbaike…

2023爱分析·大模型厂商全景报告|爱分析报告

01 研究范围定义 研究范围 大模型是指通过在海量数据上依托强大算力资源进行训练后能完成大量不同下游任务的模型。2023年以来&#xff0c;ChatGPT引爆全球大模型市场。国内众多大模型先后公测&#xff0c;众多互联网领军者投身大模型事业&#xff0c;使得大模型市场进入“百团…

Redis篇之过期淘汰策略

一、数据的过期策略 1.什么是过期策略 Redis对数据设置数据的有效时间&#xff0c;数据过期以后&#xff0c;就需要将数据从内存中删除掉。可以按照不同的规则进行删除&#xff0c;这种删除规则就被称之为数据的删除策略&#xff08;数据过期策略&#xff09;。 2.过期策略-惰…

【C语言自定义类型详解进阶】结构体(补充结构体的对齐和位段,一口气看完系列,央妈都点赞的博文)

目录 1.结构体 1.1 结构的基础知识 1.2 结构的声明 1.2.1特殊的声明&#xff08;匿名结构体类型&#xff09; 1.3结构体变量的定义 1.4关于匿名结构体类型的补充 1.5结构体的自引用 1.6结构体变量的初始化 2.结构体内存对齐&#xff08;重点&#xff09; 2.1偏移量补…

Redis篇之缓存雪崩

一、什么的缓存雪崩 缓存雪崩&#xff1a;在同一时间段大量的缓存key同时失效或者redis服务宕机&#xff0c;导致大量请求到达数据库给数据库带来巨大压力&#xff0c;可能导致数据库崩了。 二、应该怎么解决 1.给不同的Key的TTL添加随机值 2.利用Redis集群提高服务的可用性 3…

【人工智能】人工智能 – 引领未来科技的潮流

写在前面 引言红利挑战结论 引言 人工智能是指使计算机系统表现出类似于人类智能的能力。其目标是实现机器具备感知、理解、学习、推理和决策等智能行为。人工智能的发展可以追溯到上世纪50年代&#xff0c;随着计算机技术和算法的不断进步&#xff0c;人工智能得以实现。 今天…

QML中常见热区及层级结构

目录 引言层级结构默认层级结构z值作用范围遮罩实现-1的作用 热区嵌套与普通元素与其他热区与Flickable 事件透传总结 引言 热区有很多种&#xff0c;诸如MouseArea、DropArea、PinchArea等等&#xff0c;基本都是拦截对应的事件&#xff0c;允许开发者在事件函数对事件进行响…

米贸搜|Facebook在购物季使用的Meta广告投放流程

一、账户简化 当广告系列开始投放后&#xff0c;每个广告组都会经历一个初始的“机器学习阶段”。简化账户架构可以帮助AI系统更快获得广告主所需的成效。例如&#xff1a; 每周转化次数超过50次的广告组&#xff0c;其单次购物费用要低28%&#xff1b;成功结束机器学习阶段的…

图像处理入门:OpenCV的基础用法解析

图像处理入门&#xff1a;OpenCV的基础用法解析 引言OpenCV的初步了解深入理解OpenCV&#xff1a;计算机视觉的开源解决方案什么是OpenCV&#xff1f;OpenCV的主要功能1. 图像处理2. 图像分析3. 结构分析和形状描述4. 动态分析5. 三维重建6. 机器学习7. 目标检测 OpenCV的应用场…

嵌入式中轻松识别STM32单片机是否跑飞方法

单片机项目偶尔经常出现异常&#xff0c;不知道是程序跑飞了&#xff0c;还是进入某个死循环了&#xff1f; 因为发生概率比较低&#xff0c;也没有规律&#xff0c;所以没办法在线调试查找问题。 结合这个问题&#xff0c;给大家分享一下用ST-LINK Utility识别单片机程序是否…

Linux版Black Basta勒索病毒针对VMware ESXi服务器

前言 Black Basta勒索病毒是一款2022年新型的勒索病毒&#xff0c;最早于2022年4月被首次曝光&#xff0c;主要针对Windows系统进行攻击&#xff0c;虽然这款新型的勒索病毒黑客组织仅仅才出来短短两个多月的时间&#xff0c;就已经在其暗网平台上已经公布了几十个受害者之多&…

编译原理实验1——词法分析(python实现)

文章目录 实验目的实现定义单词对应的种别码定义输出形式&#xff1a;三元式python代码实现运行结果检错处理 总结 实验目的 输入一个C语言代码串&#xff0c;输出单词流&#xff0c;识别对象包含关键字、标识符、整型浮点型字符串型常数、科学计数法、操作符和标点、注释等等。…

[计算机提升] 还原系统:系统映像

6.4 还原系统&#xff1a;系统映像 1、打开系统设置&#xff0c;进入到恢复页面&#xff0c;然后点击高级启动中的立即重新启动进入到高级启动页面。 2、点击疑难解答 3、点击高级选项 4、点选查看更多恢复选项到下一步系统映像修复&#xff1a; 5、点选系统映像恢复 …

Poller描述符监控类实现(模块四)

目录 类功能 类设计 类实现 编译 类功能 类设计 //Poller描述符监控类 #define MAX_EPOLLEVENTS class Poller{private:int _epfd;struct epoll_event _evs[MAX_EPOLLEVENTS];std::unordered_map<int, Channel *> _channels;private:// 对epoll的直接操作void Updat…

探索C语言中的联合体与枚举:数据多面手的完美组合!

​ ✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;C语言学习 贝蒂的主页&#xff1a;Betty‘s blog 1. 联合体的定义 联合体又叫共用体&#xff0c;它是一种特殊的数据类型&…