概率论相关题型

文章目录

  • 概率论的基本概念
    • 放杯子问题
    • 条件概率与重要公式的结合
    • 独立的运用
  • 随机变量以及分布
    • 离散随机变量的分布函数特点
    • 连续随机变量的分布函数在某一点的值为0
    • 正态分布标准化
    • 随机变量函数的分布
  • 多维随机变量以及分布
    • 条件概率
    • max 与 min 函数的相关计算
    • 二维随机变量
    • 二维随机变量求边缘概率密度
    • 独立性
    • Z = X + Y
    • max{X,Y}
    • 离散二维随机变量的条件概率以及max 与min
  • 随机变量的数字特征

概率论的基本概念

  • 1.互斥事件(互不相容)与对立事件:A 与 B 的交集为空集,A 和 B 不可能同时发生,区别于对立事件(在互斥事件的基础上,A 和 B 的和为全集)
  • 对于互斥事件有 P(A + B + C ··· + Z) = P(A) + P(B) + P( C) + ··· + P(Z)
  • 对于一般的不是互斥,P(A+B) = P(A) + P(B ) - P(AB)这里不是P(A)*P(B) ,三个变量
    P(A+B+C) = P(A) + P(B) + P© -P(AB) -P(AC) -P(BC) +P(ABC)
  • 古典概型,条件概率,三个重要的公式:乘法公式,全概率公式(化整为零),贝叶斯公式(利用先验概率求后验概率)
  • 事件的独立性:P(AB) = P(A)P(B) ,三个事件的独立性要有四个式子成立------> n 各事件相互独立,则任意的2到n-1 的事件都相互独立,替换成对立事件也是成立的
  • P(AB) = P(A) - P(AB非) 这个式子通过包含关系直接推出

在这里插入图片描述

  • 为什么分母不使用12*11*10 ,分析,使用这个的话要注意 ,其实这个是A(3,10),那么就是讲究顺序的了,由于筛选是最终的结果,是不讲究顺序的,只能用C(3,10)

放杯子问题

  • 将三个小球放进4各杯子,问杯中的最大小球个数分别为1,2,3的概率

站在小球的角度,选择杯子

  • 对于1:那么就是432 / 444
  • 对于3 :就是C(1,4) / 444
  • 对于2: 就是1 - P(1) - P(3)

条件概率与重要公式的结合

在这里插入图片描述
在这里插入图片描述

  • 可能一开始对于 求P(A2) 没有什么思路,搞不清楚应该怎么算,这时可以考虑用全概率公式

在这里插入图片描述

独立的运用

在这里插入图片描述

随机变量以及分布

  • 注意区分离散型随机变量:二项分布,(0-1)分布,泊松分布,注意对它们分布列以及分布函数的求解(端点值?)
  • 连续随机变量:均匀分布,指数分布,正态分布
  • 指数分布是没有记忆性的P{X>s+t|X>s} = P{X>t}
  • 二项分布的趋近为(np)泊松分布和正态分布
  • 正态分布在u= 0 ,方差为1 时称为标准的正态分布

在这里插入图片描述

离散随机变量的分布函数特点

在这里插入图片描述
在这里插入图片描述

  • 注意离散型随机变量的分布律与分布函数的关系

连续随机变量的分布函数在某一点的值为0

在这里插入图片描述

正态分布标准化

在这里插入图片描述

  • 注意对带有绝对值的转换,以及带有负数的转换

随机变量函数的分布

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 对于函数是单调的话,可以使用公式法快速求解,如果不是单调的话,就按照定义一步步求解
  • 注意开始计算的时候,要提前确定好,Y 的范围,是否直接大于0,还是什么范围

多维随机变量以及分布

  • 边缘分布:其中 Z = X + Y ,所得到的z 的边缘分布被称为卷积公式
  • 对于 M =max{X,Y} 与 N = min{X,Y} 的分布函数的求法,其中X,Y 相互独立,且各自的分布函数Fx(x) 与 Fy(y) 那么有 F max(z) = Fx(x) * Fy(y) Fmin(z) = 1- (1-Fx(x))*(1-Fy(y))
    对于上面的情况可以推广到 n 各相互独立的随机变量 ,都可以成立
  • 最主要的是要分清,到底式子的形式是概率密度还是分布函数

条件概率

在这里插入图片描述

max 与 min 函数的相关计算

在这里插入图片描述

  • 0.84 0.16

二维随机变量

  • 对于开始的未知数的求解:分布函数的整体为1
  • (1)对于X,Y 的确切的值的,就在相对应的面积范围内求解
  • (2)对于边缘分布的,一方为给出的范围,另一方则为全部范围
  • (3)像下面的第四题,其实的真正的目的,就是给x,y 一个更加具体的一个范围进行求解

在这里插入图片描述
在这里插入图片描述

二维随机变量求边缘概率密度

  • 以下面的第二问为例子:当你求x 的边缘概率密度时,你要把x 当作一个已经已知范围的一个常量,实际上y 才是你的变量,这就好比你其实是在求一条线(每当x 确定的时候),所以在求积分的上下限的时候,这时得到的应该是变量y 关于 x 的范围 , 也就是[x^2 , 1] ,当你求y 的概率密度的时候,y 就变成了常量,积分的上下限应该是变量x 关于常量 y 的一个范围,也就是[ - 根号 y, 根号y ]

在这里插入图片描述

独立性

  • 对于独立性的证明,就按照定义来即可,分布函数或者概率密度都可以

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 简单的分析:由一开始的独立性,得出f(x,y),对于后面的z ,其实 z 的取值范围已经给出,所谓的求分布律就是让你求相对应的概率,这个概率也就是f(x,y) 相对应的概率

Z = X + Y

  • 卷积的两种方法都是等价的,不过下面的第一种方法相对来说更加简单,计算以及运算的过程在于你的选择
  • 利用公式来求,同样地,与求边缘概率密度一样,这里将z 看成常量,x 和 y 是看成以 z 为变量的一个函数,有时候是要进行分段进行一个计算
  • 并不建议一个大括号直接运算完成,而是以z 的范围作为分隔,一个个进行计算

在这里插入图片描述
在这里插入图片描述

max{X,Y}

  • 注意最后的时候的变量都替换成u 了

在这里插入图片描述
在这里插入图片描述

离散二维随机变量的条件概率以及max 与min

  • 在离散随机变量中,条件概率的理解 p{X = 2| Y = 2} 由于是在Y = 2 的条件下,那么就要将Y = 2 的全部情况算进去(不止一个x) ,但是X = 2 的话,就只是一个x ,同理是可以类推到连续的随机变量的
  • 对于离散型的max 与min 的话,不如直接列举进行一个计算,连续型才用公式
    在这里插入图片描述
    在这里插入图片描述

随机变量的数字特征

  • (1) 懂得离散型随机变量与连续型随机变量的期望的求法
  • (2)随机变量的函数的数学期望:对于离散型,直接将每个取值代入函数,得到新的取值,再和相对应的概率相乘再相加即可;对于连续型随机变量,直接对g(x)f(x) 进行积分 ,(区别于f(x) 自身的期望, xf(x) 的积分
  • (3)对于二维的随机变量:对于离散型,就是相对应的取值乘概率后相加;对于连续型就变成 对g(x,y)f(x,y) 的一个求积分的过程
  • (4) 注意期望的相关计算的公式:E(x+y) = E(x) + E(y) (减号也是一样) E(XY) = E(X)E(Y) 当X,Y 相互独立的时候成立 (这两个公式均可以推广)
  • (5)方差 D(x) = E{[X-E(X)]^2} ,就是每一个取值与期望的差的平方的期望,它的算数平方根为均方差
    当计算离散随机变量的时候,[X-E(X)]^2 乘相对应的概率再求和即可; 连续型的时候 [X-E(X)] ^2 乘f(x) 的积分
  • 由于计算方差难度问题,常常用 D(X) = E(X^2) - [E(X)]^2 来计算
  • 方差的相关性质:常数的方差为0, D(cX) = c^2 D(X) D(C+ X) = D(X)
    D(X+Y ) = D(X) + D(Y) + 2E{(X-E(x))(Y-E(y))}
    D(X-Y ) = D(X) + D(Y) - 2E{(X-E(x))(Y-E(y))}
    当X ,Y 相互独立的时候,D(X+Y) = D(X-Y) = D(X) + D(Y)
  • 标准化的随机变量,就是 X- E(X) / 均方差
  • 协方差 Cov(X,Y) = E{(X-E(x))(Y-E(y))} 相关系数 = Cov(X,Y) /X 的均方差乘Y的均方差
  • 协方差可以写成 Cov(X,Y) = E(XY) - E(X)E(Y)
  • 协方差的相关性质 Cov(aX,bY) = abCov(X,Y) Cov(X1+X2,Y) = Cov(X1,Y) + Cov(X2+Y)
  • 相关系数 = 0 时,称为X 与 Y 不相关(就是X 与 Y 没有线性关系,但是可能会存在其他的关系)
  • 相互独立可以推出不相关,但是不相关推不出相互独立, 不相关 与 相关系数 = 0,Cov(X,Y) =0 E(XY) = E(X)E(Y)
  • 对于二维正态随机变量的相互独立与不相关的条件是相互等价的
    在这里插入图片描述
  • 矩、协方差矩:分清k 阶原点矩,k 阶中心距,k+l 阶混合矩 k + l 阶混合中心矩

在这里插入图片描述

  • 切比雪夫不等式给出了再随机变量X 的分布未知,只知道E(X) 与D(X) 的情况下,对E{|X-E(X)|<=m} 概率的下限的估计

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2661734.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

2023中国企业级存储市场:整体韧性成长,领域此消彼长

多年之后回头看&#xff0c;2023年也许是中国企业级存储市场标志性的一年。 后疫情时代的开启&#xff0c;中国数字经济快速发展、数据产业方兴未艾&#xff0c;为数据存储市场带来了前所未有的活力&#xff1b;与此同时&#xff0c;外部环境的不确定性骤增&#xff0c;人工智…

关于“Python”的核心知识点整理大全49

目录 16.2.10 加亮颜色主题 16.3 小结 第&#xff11;7 章 使用API 17.1 使用 Web API 17.1.1 Git 和 GitHub 17.1.2 使用 API 调用请求数据 17.1.3 安装 requests 17.1.4 处理 API 响应 python_repos.py 注意 17.1.5 处理响应字典 python_repos.py import json i…

1.Linux快速入门

Linux快速入门 Linux操作系统简介Linux操作系统优点Linux操作系统发行版1. Red Hat Linux2. CentOS3. Ubuntu4. SUSE Linux5. Fedora Linux 32位与64位操作系统的区别Linux内核命名规则 Linux操作系统简介 Linux操作系统是基于UNIX以网络为核心的设计思想&#xff0c;是一个性…

什么是计算机视觉

计算机视觉&#xff08;Computer Vision&#xff09;是一门研究如何让计算机能够理解和分析数字图像或视频的学科。简单来说&#xff0c;计算机视觉的目标是让计算机能够像人类一样对视觉信息进行处理和理解。为实现这个目标&#xff0c;计算机视觉结合了图像处理、机器学习、模…

JavaSE基础50题:28.(数组练习)冒泡排序

概述 给定一个整型数组&#xff0c;实现冒泡排序。 如&#xff1a;给一组数组{5&#xff0c;10&#xff0c;8&#xff0c;3&#xff0c;7}进行冒泡排序。 j一直往下走&#xff0c;和下一个数字进行比较&#xff0c;如果当前数字大于下一个数字&#xff0c;则两个数字交换&…

什么是高并发系统?

1.1 什么是高并发&#xff1f; 高并发&#xff08;High Concurrency&#xff09;&#xff0c;通常是指通过设计保证系统能够同时处理很多请求。即在同一个时间点&#xff0c;有很多的请求同时访问同一个接口。高并发意味着大流量&#xff0c;需要运用技术手段去抵抗这种大流量…

大数据实践之路 读后感

欢迎关注公众号&#xff1a;数据运营入表资产化服务&#xff0c;获取更多算法源码材料 2023数据资源入表白皮书&#xff0c;推荐系统源码下载-CSDN博客 浅析研发支出费用化和资本化的区别-CSDN博客 商业银行数据资产估值白皮书&#xff0c;推荐系统源码下载-CSDN博客 用友B…

工业以太网交换机的出色优势是什么?

网络交换机可以分为商用网络交换机和工业以太网交换机两种类别。就其灵活性和抗干扰性而言&#xff0c;工业交换机和商用交换机之间存在着显著差异&#xff0c;工业交换机的功能更加实用。 工业以太网和商业网络在数据链路层、网络层和协议层等方面基本上没有本质区别。工业以…

白话机器学习的数学-2-分类

1、设置问题 图片分类&#xff1a;只根据尺寸把它分类为 纵向图像和横向图像。 如果只用一条线将图中白色的点和黑色的点分开&#xff1a; 这次分类的目的就是找到这条线。 2、内积 找到一条线&#xff0c;这是否意味着我们要像学习回归时那样&#xff0c;求出一次函数的斜率…

2024年第三届服务机器人国际会议(ICoSR 2024) | Ei、Scopus双检索

会议简介 Brief Introduction 2024年第三届服务机器人国际会议(ICoSR 2024) 会议时间&#xff1a;2024年7月26日-28日 召开地点&#xff1a;中国杭州 大会官网&#xff1a;www.iwosr.org 进入新时代&#xff0c;科技更新迭代快速发展&#xff0c;机器人不仅变得更加节能&#x…

创新型产品说明书模板的设计与实践,我悟了!

在当今这个快节奏、高效率的时代&#xff0c;产品说明书已经不再仅仅是一纸简单的使用指南。它既是产品的重要组成部分&#xff0c;也是品牌形象和用户体验的关键环节。然而&#xff0c;传统的产品说明书制作方式往往效率低下&#xff0c;管理混乱&#xff0c;难以满足市场的多…

vue3+ts打开echarts的正确方式

实例项目使用 vite5 vue3 ts&#xff0c;项目地址 vite-vue3-charts&#xff0c;预览地址 https://weizwz.com/vite-vue3-charts 准备工作 1. 注册为百度地图开发者 官网地址&#xff0c;然后在 应用管理 -> 我的应用 里&#xff0c;创建应用&#xff0c;创建好后复制 AK …

线上发布稳定性方案介绍

目录 一、方案说明 二、线上发布问题描述 2.1 无损上下线背景说明 2.1.1 服务⽆法及时下线 2.1.2 初始化慢 2.1.3 注册太早 2.1.4 发布态与运⾏态未对⻬ 三、问题解决方案 3.1 无损下线方案 3.1.1 什么是无损下线 3.1.2 传统解决方式 3.1.3 云原生场景解决方案 3.1…

Net6 Core webApi发布到IIS

Net6 Core Api发布到IIS不同于webapi&#xff0c;依赖框架不同&#xff0c;配置也移至项目内Program.cs 一、发布到指定文件夹和IIS&#xff0c;不过注意IIS应用程序池选择的是 “无托管代码“ 在IIS管理器中点击浏览&#xff0c;访问接口路径报500.19&#xff0c;原因是所依赖…

HALCON报错#2021:System clock has been set back 解决方案

如果操作系统修改过时间&#xff0c;再更新到正常的时间后&#xff0c;打开halcon可能会报错#2021&#xff1a;System clock has been set back. 解决方案&#xff1a; 1、联网同步Windows 系统时间。 2、检查以下目录中是否有超过当前时间的文件&#xff08;删除&#xff09…

o2o生活通全开源尊享版+多城市切换+企业付款+交友IM+平台快报

搭建教程 1.把 pigo2ov282.sql 文件里面的网址 test.souho.net 全部批量替换为你的自己的 2.使用 phpmyadmin 导入 pigo2ov282.sql 到你的数据库&#xff08;直接访问/phpmyadmin 即可&#xff09; 3.修改数据库文件/conf/db.php 里的数据库连接信息&#xff08;请勿使用记事本…

最新最全智能科学与技术专业毕业设计选题精华汇总-持续更新中

文章目录 0 简介1 如何选题2 最新智能科学与技术毕设选题3 最后 0 简介 Hi&#xff0c;大家好&#xff0c;随着毕业季的临近&#xff0c;许多同学开始向学长咨询关于选题和开题的问题。在这里&#xff0c;学长分享一些关于智能科学与技术专业毕业设计选题的内容。 以下为学长…

反转链表、链表的中间结点、合并两个有序链表(leetcode 一题多解)

一、反转链表 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 思路一&#xff1a;翻转单链表指针方向 这里解释一下三个指针的作用&#xff1a; n1&#xff1…