深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第六节 理解垃圾回收GC,提搞程序性能

深入浅出图解C#堆与栈 C# Heaping VS Stacking 第六节 理解垃圾回收GC,提搞程序性能

  • [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第一节 理解堆与栈](https://mp.csdn.net/mdeditor/101021023)
  • [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第二节 栈基本工作原理](https://mp.csdn.net/mdeditor/101022949#)
  • [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第三节 栈与堆,值类型与引用类型](https://mp.csdn.net/mdeditor/101023885#)
  • [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第四节 参数传递对堆栈的影响 1](https://mp.csdn.net/mdeditor/101026168#)
  • [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第四节 参数传递对堆栈的影响 2](https://mp.csdn.net/mdeditor/101027584#)
  • [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第五节 引用类型复制问题及用克隆接口ICloneable修复](https://mp.csdn.net/mdeditor/101028008#)
  • [深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第六节 理解垃圾回收GC,提搞程序性能](https://mp.csdn.net/mdeditor/101029557#)
  • 理解垃圾回收GC,提搞程序性能
    • 前言
    • 简介
    • 绘图Graphing
    • GC垃圾清理Compacting
    • 托管堆之外的终止化队列Finalization Queue和终止化-可达队列Freachable Queue
    • 静态变量
    • 总结

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第一节 理解堆与栈

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第二节 栈基本工作原理

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第三节 栈与堆,值类型与引用类型

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第四节 参数传递对堆栈的影响 1

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第四节 参数传递对堆栈的影响 2

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第五节 引用类型复制问题及用克隆接口ICloneable修复

深入浅出图解C#堆与栈 C# Heap(ing) VS Stack(ing) 第六节 理解垃圾回收GC,提搞程序性能

理解垃圾回收GC,提搞程序性能

前言

虽然在.Net Framework 中我们不必考虑内在管理和垃圾回收(GC),但是为了优化应用程序性能我们始终需要了解内存管理和垃圾回收(GC)。另外,了解内存管理可以帮助我们理解在每一个程序中定义的每一个变量是怎样工作的。


简介

这一节我们将介绍垃圾回收机制GC以及一些提搞程序性能的技巧。


绘图Graphing

让我们站在GC的角度研究一下。如果我们负责“扔垃圾”,我们需要制定一个有效的“扔垃圾”计划。显然,我们需要判断哪些是垃圾,哪些不是。

为了决定哪些需要保留,我们假设任何没有正在被使用的东西都是垃圾(如角落里堆积的破旧纸张,阁楼里一箱箱没有用的过时产品,柜子里不用的衣服)。想像一下我们跟两个好朋友生活在一起:JIT 和CLR。JIT和CLR不断的跟踪他们正在使用的东西,并给我们一个他们需要保留的东西列表。这个初始列表我们叫它“根(root)”列表。因为我们用它做起点。我们将保持一个主列表去绘制一张图,图中分布着所有我们在房子中需要保留东西。任何与主列表中有关联的东西也被画入图中。如,我们保留电视就不要扔掉电视遥控器,所以电视遥控器也会被画入图中。我们保留电脑就不能扔掉显示器键盘鼠标,同样也把它们画入图中。

这就是GC怎么决定去保留对象的。GC会保留从JIT和CLR那收到的一个根(root)对象引用列表,然后递归搜索对象引用并决定什么需要保留。

这个根的构成如下:

  • 全局/静态 指针。通过以静态变量的方式保持对象的引用,来确保对象不会被GC回收。
  • 栈里的指针。为了程序的执行,我们不想扔掉那些程序线程始终需要的对象。
  • CPU寄存器指针。托管堆里任何被CPU内存地址指向的对象都需要被保留。

在这里插入图片描述
在上面的图中,托管堆中的对象1,5被根Roots引用,3被1引用。对象1,5是被直接引用,3是通过递归查询找到。如果关联到我们之前的假设,对象1是我们的电视,对象3则是电视遥控器。当所有对象画完后,我们开始进行下一阶段:垃圾清理。

GC垃圾清理Compacting

现在我们有了一张需要保留对象的关系图,接下来进行GC的清理。
在这里插入图片描述
图中对象2和4被认定为垃圾将被清理。清理对象2,复制(memcpy )对象3到2的位置。
在这里插入图片描述
由于对象3的地址变了,GC需要修复指针(红色箭头)。然后清理对象4,复制(memcpy )对象5到原来3的位置(译外话:GC原则:堆中对象之间是没有间隙的,以后会有文章专门介绍GC原理)。
在这里插入图片描述
在这里插入图片描述
最后清理完毕,新对象将被放到对象5的上面(译外话:GC对一直管理一个指针指向新对象将被放置的地址,如黄色箭头,以后会有文章专门介绍)。

了解GC原理可以帮助我们理解GC清理(复制memcpy ,指针修复等)是怎么消耗掉很多资源的。很明显,减少托管堆里对象的移动(复制memcpy )可以提高GC清理的效率。

托管堆之外的终止化队列Finalization Queue和终止化-可达队列Freachable Queue

有些情况下,GC需要执行特定代码去清理非托管资源,如文件操作,数据库连接,网络连接等。一种可行性方案是使用析构函数(终结器):
在这里插入图片描述
译外话:析构函数会被内部转换成终结器override Finializer()

有终结器的对象在创建时,同时在Finalization Queue里创建指向它们的指针(更正原文说的把对象放到Finalization Queue里):

在这里插入图片描述
上图对象1,4,5实现了终结器,因此在Finalization Queue里创建指向它们的指针。让我们看一下,当对象2和4没有被程序引用要被GC清理时会发生什么情况。
对象2会被以常规模式清理掉(见文章开始部分)。GC发现对象4有终结器,则会把Finalization Queue里指向它的指针移到Freachable Queue中,如下图:
在这里插入图片描述
但是对象4并不被清理掉。有一个专门处理Freachable Queue的线程,当它处理完对象4在Freachable Queue里的指针后,会把它移除。

在这里插入图片描述
这时对象4可以被清理了。当下次GC清理时会把它移除掉。换句话说,至少执行两次GC清理才能把对象4清理掉,显然会影响程序性能。

创建终结器,意味着创建了更多的工作给GC,也就会消耗更多资源影响程序性能。因此,当你使用终结器时一定要确保你确实需要使用它。
更好的方法是使用IDisposable接口。

在这里插入图片描述
实现IDisposable接口的对象可以使用using关键字:
在这里插入图片描述
变量rec的作用域是大括号内,大括号外不可访问。

静态变量

在这里插入图片描述

如果你初始化了TryoutRunners,那么它将永远不会被GC清理,因为有静态指针一直指向初始化的对象。一旦调用了Runner里GetStats()方法,因为GetStats()里面没有文件关闭操作,它将永远被打开也不会被GC清理。我们可以看到程序的崩溃即将来临。

总结

一些良好的操作可以提高程序的性能:

1.清理。不要打开资源而不关闭它。关闭所有你打开的连接。尽可能快的清理所有非托管资源。一般规则:使用非托管对象,初始化越晚越好,清理越早越好。
2.不要过度引用。合理使用引用对象。如果某一个对象还存在没有被GC清理,所有它引用的对象都将不会被GC清理,如此递归下去。。。当我们完成使用一个引用对象时,把它设为NULL(视你的情况而定,注意不要产生空引用异常)。当引用少了,GC开始创建清理关系图graphing时过程就简单一些了,进而提高程序性能。
3.谨慎使用终结器Finalizaer或析构函数。能使用IDisposible代替就使用IDisposible。
4.保持对象及其成员的紧凑。如果声明一个对象并且它由多个子对象组成,尽可能的把它们放在一起初始化,好让它们所在的内存空间紧凑。GC复制这样的一大块内存比复制分散的内存碎片要容易。

原文连接:https://blog.csdn.net/leewhoee/article/details/17109201
译文连接:http://www.c-sharpcorner.com/UploadFile/rmcochran/csharp_memory_401282006141834PM/csharp_memory_4.aspx

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2660143.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【kubernetes】集群网络(一):基础篇

Flannel 1 路由表 & arp & fdb 1.1 路由表 任何网络设备都需要路由表,路由表用来决定,当收到数据包时,该向哪里进行转发。路由表项通常会包含以下几个字段: Destination:目的地Gateway:网关Mas…

12.27重构二叉树,插入排序,队列(股票,模拟),后缀表达式求值,括号匹配,验证栈序列,选择题部分

重构二叉树 误 string in, post; struct node {char a;node* lchild, * rchild;node(char x\0) :a(x), lchild(nullptr), rchild(nullptr) {} }; void so(node* r, int il, int ir, int pl, int pr) {if (il > ir)return;int root;for (root il; root < ir; root) {if…

[AI编程]AI辅助编程助手-亚马逊AI 编程助手 Amazon CodeWhisperer

亚马逊AI 编程助手 Amazon CodeWhisperer 是一种基于人工智能技术的编程辅助工具&#xff0c;旨在帮助开发人员更高效地编写代码。它可以提供实时的代码建议、自动补全和错误检查&#xff0c;帮助优化代码质量和提高编程效率。 Amazon CodeWhisperer 使用了自然语言处理和机器…

OpenChat-3.5:70亿参数下的AI突破

引言 在对话AI的发展史上&#xff0c;OpenChat-3.5标志着一个新纪元的到来。拥有70亿参数的这一模型&#xff0c;不仅是对现有语言学习模型&#xff08;LLMs&#xff09;的重大改进&#xff0c;更是在多模态任务中树立了新的标准。 模型概述 OpenChat-3.5作为一款先进的多模…

Leetcode—1572.矩阵对角线元素的和【简单】

2023每日刷题&#xff08;七十三&#xff09; Leetcode—1572.矩阵对角线元素的和 实现代码 class Solution { public:int diagonalSum(vector<vector<int>>& mat) {int n mat.size();if(n 1) {return mat[0][0];}int sum 0;int i 0, j n - 1;while(i &…

ARM CCA机密计算软件架构之RMI领域管理接口与RSI领域服务接口

领域管理接口 领域管理接口&#xff08;RMI&#xff09;是RMM与正常世界主机之间的接口。 RMI允许正常世界虚拟机监视器向RMM发出指令&#xff0c;以管理领域。 RMI使用来自主机虚拟机监视器的SMC调用&#xff0c;请求RMM的管理控制。 RMI使得对领域管理的控制成为可能&…

自动化测试框架知识总结(超详细整理)

一、什么是自动化测试框架 在了解什么是自动化测试框架之前&#xff0c;先了解一下什么叫框架&#xff1f;框架是整个或部分系统的可重用设计&#xff0c;表现为一组抽象构件及构件实例间交互的方法;另一种定义认为&#xff0c;框架是可被应用开发者定制的应用骨架。前者是从应…

Java多线程常见的成员方法(线程优先级,守护线程,礼让/插入线程)

目录 1.多线程常见的成员方法2.优先级相关的方法3.守护线程&#xff08;备胎线程&#xff09;4.其他线程 1.多线程常见的成员方法 ①如果没有给线程设置名字&#xff0c;线程是有默认名字 的&#xff1a;Thread-X(X序号&#xff0c;从0开始) ②如果要给线程设置名字&#xff0c…

10 分钟了解 nextTick ,并实现简易版的 nextTick

前言 在 Vue.js 中&#xff0c;有一个特殊的方法 nextTick&#xff0c;它在 DOM 更新后执行一段代码&#xff0c;起到等待 DOM 绘制完成的作用。本文会详细介绍 nextTick 的原理和使用方法&#xff0c;并实现一个简易版的 nextTick&#xff0c;加深对它的理解。 一. 什么是 n…

sql优化,内外连接有什么区别

内外连接是啥不必多说&#xff0c;但在做关联查询的时候&#xff0c;二者是有一些区别的&#xff1a; 举例来说&#xff0c;首先是外连接&#xff08;左外连接为例&#xff09;&#xff0c;当两个表都没有索引&#xff0c;就都是全表扫描 EXPLAIN SELECT SQL_NO_CACHE * FROM …

19个Python语法糖和9个内置装饰器

19 个Sweet的 Python Syntax Sugar&#xff0c;用于改善您的编码体验 文章目录 19 个Sweet的 Python Syntax Sugar&#xff0c;用于改善您的编码体验1. 联合运算符Union Operators&#xff1a;合并 Python 字典的最优雅方式2. 类型提示Type Hints&#xff1a;使您的 Python 程序…

EduChat账号密码登录

内测申请&#xff1a;请邮件dan_yhstu.ecnu.edu.cn&#xff0c;以“EduChat内测申请单位”作为邮件标题&#xff0c;邮件内容中写明用途 先去申请个账号和密码&#xff0c;会有一两天延迟吧&#xff0c;挺快的。 拿到账号之后去官网,点一个 官网传送门 就出来用账号密码登录的…

腾讯云轻量服务器和云服务器CVM该怎么选?区别一览

腾讯云轻量服务器和云服务器CVM该怎么选&#xff1f;不差钱选云服务器CVM&#xff0c;追求性价比选择轻量应用服务器&#xff0c;轻量真优惠呀&#xff0c;活动 https://curl.qcloud.com/oRMoSucP 轻量应用服务器2核2G3M价格62元一年、2核2G4M价格118元一年&#xff0c;540元三…

六、Redis 分布式系统

六、Redis 分布式系统 六、Redis 分布式系统6.1 数据分区算法6.1.1 顺序分区6.1.2 哈希分区 6.2 系统搭建与运行6.2.1 系统搭建6.2.2 系统启动与关闭 6.3 集群操作6.3.1 连接集群6.3.2 写入数据6.3.3 集群查询6.3.4 故障转移6.3.5 集群扩容6.3.6 集群收缩 6.4 分布式系统的限制…

幼儿园:人脸识别门禁技术,可以提高工作效率?

随着社会的不断发展和科技的飞速进步&#xff0c;人脸识别技术已经成为各行各业的一项重要工具。 在幼儿园管理中&#xff0c;人脸识别技术的应用不仅提高了安全性&#xff0c;也优化了接送流程&#xff0c;为幼儿园、家长和孩子们带来了更便捷的管理和服务体验。 客户案例一 …

快解析结合用友T+异地访问解决方案

用友T作为一款纯BS架构软件&#xff0c;外网用户只需打开浏览器&#xff0c;输入域名即可访问T服务器。但是由于网络原因&#xff0c;很多客户没有公网IP&#xff0c;使T远程访问无法实现。快解析云解析版结合T使用&#xff0c;无需公网IP、无需在路由器里开放端口&#xff0c;…

C++系列-第3章循环结构-26-认识do-while语句

C系列-第3章循环结构-26-认识do-while语句 在线练习&#xff1a; http://noi.openjudge.cn/ https://www.luogu.com.cn/ 对于 while 语句而言&#xff0c;如果不满足条件&#xff0c;则不能进入循环。但有时候我们需要即使不满足条件&#xff0c;也至少执行一次。 do-while循环…

Vue(一):Vue 入门与 Vue 指令

Vue 01. Vue 快速上手 1.1 Vue 的基本概念 用于 构建用户界面 的 渐进性 框架 构建用户界面&#xff1a;基于数据去渲染用户看到的界面渐进式&#xff1a;不需要学习全部的语法就能完成一些功能&#xff0c;学习是循序渐进的框架&#xff1a;一套完整的项目解决方案&#x…

Redis管道

问题引出 Redis是一种基于客户端-服务端模型以及请求/响应协议的TCP服务。一个请求会遵循以下步骤&#xff1a; 1 客户端向服务端发送命令分四步(发送命令→命令排队→命令执行→返回结果)&#xff0c;并监听Socket返回&#xff0c;通常以阻塞模式等待服务端响应。 2 服务端…

深入探究Protostuff枚举类型的序列化

背景&#xff1a; 有一天突然被一个群组排查线上问题&#xff0c;说是一个场景划线价和商品原价一模一样。看到问题时&#xff0c;我的内心毫无波澜&#xff0c;因为经常处理线上类似的问题&#xff0c;但了解业务后发现是上个版本经我手对接的新客弹窗商品算价&#xff0c;内心…