设计模式 - Singleton pattern 单例模式

文章目录

  • 定义
  • 单例模式的实现构成
    • 构成
    • UML图
  • 单例模式的六种实现
    • 懒汉式-线程不安全
    • 懒汉式-线程安全
    • 饿汉式-线程安全
    • 双重校验锁-线程安全
    • 静态内部类实现
    • 枚举实现
  • 总结
  • 其他设计模式文章:
  • 最后

定义

在这里插入图片描述

单例模式是一种创建型设计模式,它用来保证一个类只有一个实例, 并且提供一个访问该实例的全局节点。其在很多场景中都有应用,比如数据库连接池、日志记录器、Spring中对象的创建等。

总的来说,单例模式在需要控制实例数量、确保全局唯一性的场景中被广泛应用。单例模式通过限制类的实例化对象为一个,可以确保全局唯一性的场景中被广泛应用,从而有助于控制资源访问、简化全局访问点、减少内存占用等,在很多情况下都可以提升程序的运行效率。

单例模式的实现构成

构成

一个私有的构造函数、一个私有的静态变量以及一个共有的静态函数。

其中,私有构造函数保证了其他线程不能通过new来创建对象实例,而共有的静态函数则是用来后续所有对此函数的调用都返回唯一的私有静态变量。

UML图

在这里插入图片描述

单例模式的六种实现

懒汉式-线程不安全

下面实现中,instance 被延迟实例化,这样的话,当没有使用到这个类的话,就会节约资源,不会实例化 LazySingletonsAreNotSafe

但是该实现是线程不安全的,因为在多线程环境下,可以有多个线程同时进入 getInstance 方法,并且这个时候 instance 还未实例化,那么它们就都可以进入到 if 逻辑中,执行实例化操作,从而导致线程不安全问题。

public class LazySingletonsAreNotSafe {private static LazySingletonsAreNotSafe instance;private LazySingletonsAreNotSafe() {}public static LazySingletonsAreNotSafe getInstance() {if (instance == null) {instance = new LazySingletonsAreNotSafe();}return instance;}
}

懒汉式-线程安全

那么,如何可以保证线程安全呢?

其实,上一个实现方式中,线程不安全就是因为 instance 的实例化被执行了很多次,所以我们只要对 getInstance 方法进行加锁,保证同一个时间点只有一个线程可以进入该方法进行实例化操作,那么就保证了线程安全问题。
实现代码如下:

public class LazySingletonsAreSafe {private static LazySingletonsAreSafe instance;private LazySingletonsAreSafe() {}// 关键点:synchronized进行了加锁操作,从而保证线程安全。public static synchronized LazySingletonsAreSafe getInstance() {if (instance == null) {instance = new LazySingletonsAreSafe();}return instance;}
}

饿汉式-线程安全

对于懒汉式方法,如果不加锁会导致线程安全问题,而加锁虽然会保证线程安全,但是也带来了一定程度上的性能损耗,因此可以采用饿汉式。
懒汉式线程安全问题的原因是 getInstance 方法可能被执行多次,从而导致被实例化多次。所以我们采用在类加载的时候,直接实例化 instance ,这样就会避免实例化多次的问题。

当然,因为我们一开始在类加载的时候对象就被实例化了,所以也不会有延迟实例化种可以节约资源的优点。

public class EagerSingleton {private static final EagerSingleton instance = new EagerSingleton();private EagerSingleton() {}public static EagerSingleton getInstance() {return instance;}
}

双重校验锁-线程安全

双重校验锁先判断 uniqueInstance 是否已经被实例化,如果没有被实例化,那么才对实例化语句进行加锁。

public class DoubleCheckedLockingSingleton {// 注意:volatile 修饰private static volatile DoubleCheckedLockingSingleton instance;private DoubleCheckedLockingSingleton() {}public static DoubleCheckedLockingSingleton getInstance() {if (instance == null) {synchronized (DoubleCheckedLockingSingleton.class) {if (instance == null) {instance = new DoubleCheckedLockingSingleton();}}}return instance;}
}

问题1: 为什么两个if?

if (instance == null) {synchronized (DoubleCheckedLockingSingleton.class) {if (instance == null) {instance = new DoubleCheckedLockingSingleton();}}}

第一个if是因为:高并发场景下,还是可能有不止一个线程成功的在 instance 还未初始化的时候就进入这里了,所以他们都会走下面的逻辑,所以加了一把锁,用来保证线程安全问题。
而第二个if则是因为:等到第一个线程执行完实例化之后,它会释放锁,这样的话下一个线程就会来拿这把锁,然后进行新一轮的实例化。所以,在锁里添加了第二个if用来进行判断,避免实例化多次。

问题2: 为什么 instancevolatile 进行修饰?

private static volatile DoubleCheckedLockingSingleton instance;

这个是因为 volatile 有禁止指令重排的功能。上述代码中单例对象有的时候可能会发生空指针异常的问题。

对于instance = new DoubleCheckedLockingSingleton(); 它其实是分为三个步骤来执行的:

  1. JVM为对象分配内存
  2. 在内存中进行对象的初始化
  3. 将内存对应的地址复制给instance

假设,现在有两个线程进入到了getInstance方法,当T1线程执行实例化操作时,T2线程在进行判断。

因为instance = new DoubleCheckedLockingSingleton();操作不是原子的,所以编译器可能会进行指令的重排序,即:

  1. JVM为对象分配内存
  2. 将内存对应的地址复制给instance
  3. 在内存中进行对象的初始化

这样的话,当T1线程执行完第二步地址复制给instance的时候,T2线程去进行判断,那么instance == null则是为true,所以会直接跳到最下面 return instance。从而导致空指针问题。

volatile可以避免指令重排,所以只要用volatile修饰instance就可以避免这个问题了。
在这里插入图片描述

静态内部类实现

BillPughSingleton 类加载时,静态内部类 SingletonHolder 没有被加载进内存。只有当调用 getUniqueInstance 方法从而触发 SingletonHolder.INSTANCESingletonHolder才会被加载,进行初始化。

public class BillPughSingleton {private BillPughSingleton() {}private static class SingletonHelper {private static final BillPughSingleton INSTANCE = new BillPughSingleton();}public static BillPughSingleton getInstance() {return SingletonHelper.INSTANCE;}
}

枚举实现

枚举实例的创建是线程安全的,而且在任何情况下都是它一个单例。在别的几种单例中,反序列化时会重新创建对象,而枚举单例则不存在这种情况。

public enum EnumSingleton {INSTANCE;public void someMethod() {}
}

总结

      
1. 饿汉式

    实现:在类加载时就完成了实例化。
    特点:线程安全,实现简单;但可能会造成资源浪费,因为即使不需要使用实例,也会在类加载时创建。
      
2. 懒汉式

    实现:在第一次调用 getInstance() 方法时进行实例化。
    特点:延迟加载,节省资源;但需要在 getInstance() 方法上加锁才可以保证线程安全,会影响性能。
      
3. 双重校验锁

    实现:在 getInstance() 方法中加入两次实例检查,第二次检查前加上锁,既保证了线程安全又提高了效率。
    特点:结合了懒汉式和饿汉式的优点,既实现了延迟加载,又优化了并发性能。
      
4. 静态内部类

    实现:将单例实例放在静态内部类中,当外部类被加载时静态内部类并不会被加载,只有在首次调用 getInstance() 方法时才会加载。
    特点:既实现了延迟加载,又保证了线程安全,且不需显式同步。
      
5. 枚举

    实现:利用枚举类型的特性来保证实例的唯一性。
    特点:线程安全,简洁易读,还能防止反序列化攻击。

其他设计模式文章:

  • 设计模式 - Singleton pattern 单例模式
  • 设计模式 - Factory Method 工厂方法
  • 设计模式 - Chain Of Responsibility 责任链模式
  • 设计模式 - Template Method 模板方法
  • 设计模式 - Strategy Pattern策略模式
  • 设计模式 - Observer Pattern 观察者模式

最后

如果小伙伴们觉得我写的文章不错的话,那么请给我点点关注,我们下次见!
      在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3281411.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

python做简单爬虫的一些常用组件

文章目录 前言requestjsonbs4 前言 最近一直在做零散的一次性的爬虫工作,基本都是用python开发的,整理一下python做小规模爬虫开发常用的一些工具类 request python最简单的发http请求的包,request.get和request.post就可以搞定绝大部分的…

【Github】Github 上commit后 contribution 绿格子不显示 | Github绿格子 | Github贡献度不显示

一、Github 消失的绿点 1、贡献值为什么没了? 2、选择要显示的贡献 如下配置 二、如何解决消失的绿点? 1、添加邮箱 确保邮箱的设置必须选择一个邮箱邮箱 2、git config 添加邮箱 设置邮箱如下: git config --local user.email 316434776…

使用标量函数实现 EF Core 的实用方法

一.介绍 在构建应用程序时,您可能使用标量函数在数据库端实现一些逻辑。在 SQL 中,标量函数是一种对单个值或少量输入值进行操作并始终返回单个值作为输出的函数。这些函数本质上是可重复使用的代码块,用于对数据执行计算或操作。 以下是标…

Java面试——Tomcat

优质博文:IT_BLOG_CN 一、Tomcat 顶层架构 Tomcat中最顶层的容器是Server,代表着整个服务器,从上图中可以看出,一个Server可以包含至少一个Service,用于具体提供服务。Service主要包含两个部分:Connector和…

Java实现数据库图片上传(包含从数据库拿图片传递前端渲染)-图文详解

目录 1、前言: 2、数据库搭建 : 建表语句: 3、后端实现,将图片存储进数据库: 思想: 找到图片位置(如下图操作) 图片转为Fileinputstream流的工具类(可直接copy&#…

系统学习渗透测试:从零到精通的全面指南

渗透测试,作为网络安全领域的一项重要技术,旨在通过模拟黑客攻击来评估计算机系统的安全性。对于想要系统学习渗透测试的人来说,这既是一条充满挑战的道路,也是一次深入了解网络安全的宝贵机会。本文将从基础知识、技能提升、实战…

【释放品牌魅力,开启营销新篇章】—— 短视频矩阵营销系统源码

【释放品牌魅力,开启营销新篇章】—— 短视频矩阵营销系统在这个数字化高速发展的时代,您是否还在为品牌曝光度不足、营销效果不佳而苦恼?来吧,让我们一起探索全新的解决方案——短视频矩阵营销系统! 在这个数字化高速…

NC 缺失的第一个正整数

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 描述 给定一个无重…

AI初学者必看: 什么是大型语言模型 (LLM)?

介绍 “人工智能(AI)”一词于 1956 年问世,如今已为大家所熟知。然而,在 ChatGPT 迅速流行之前,AI 的使用和讨论大多局限于科学研究或虚构电影。如今,AI 尤其是生成式 AI 已成为大家热议的话题。 初学者生…

详解校门外的树(树状数组)

前言 在看之前建议先看一下 【学习笔记】详解树状数组-CSDN博客 题目 思路 建立两个树状数组,维护左括号与右括号。 假设有一个长度为10的数轴,我们要将区间[ 2 , 5 ]中种树,这时,我们将 2 处放一个左括号 ” ( ” ,5处放一个 ” )” &…

3DMAX神经网络插件Neuron使用方法详解

3DMAX神经网络插件Neuron使用方法 3DMAX神经网络插件Neuron,从一系列样条曲线创建具有分支结构的几何体。适用于如神经网络、血管、树枝等形状的3D建模。 【适用版本】 3dMax2016及更高(不仅限于此范围) 【安装方法】 Neuron插件无需安装&a…

【C++】跳转语句-continue语句

continue语法特点&#xff1a; 中止循环后会继续执行下面循环&#xff08;除了continue所跳出的那些执行操作不会执行&#xff09; 这也是额continue语句和break语句最大的区别 break是直接跳出循环不再执行下面步骤 #include<iostream> using namespace std;int main…

收集树中的金币

提示 1 定义一个点的度数为其邻居个数。如果一个点的度数为 1&#xff0c;那么这个点叫做叶子节点&#xff0c;例如示例 2 的 3,4,6,7 都是叶子节点。 如果叶子节点没有金币&#xff0c;我们有必要移动到叶子节点吗&#xff1f;没有必要。 那么可以先把这些没有金币的叶子节点…

等保学习干货|等保测评2.0技术中间件自查阶段,零基础入门到精通,收藏这一篇就够了

0x01 前言 以下是根据我国网络安全体系制订的一系列保护流程进行的等级保护测评。该测评针对已有和将上线的业务服务的基础设施&#xff08;系统、数据库、中间件等&#xff09;&#xff0c;执行一系列检查以确保安全合规。本次先行分享学习等保中的技术自查阶段知识&#xff…

Android GreenDao 升级 保留旧表数据

Android GreenDao 升级 保留旧表数据 大川的川关注IP属地: 北京 0.2052019.08.05 11:54:36字数 270阅读 363 瓦力和伊娃 GreenDao升级库版本号之后&#xff0c;以前的旧数据没有了&#xff0c;为啥&#xff0c;因为GreenDao在升级的时候会删除旧库&#xff0c;创建新库&#…

【超详细含图】Ubuntu系统忘记root密码的解决方法

1.启动或者重启Ubuntu长按shift进入grub菜单&#xff1b; 选第二个&#xff0c;按住e进入 2.选择recovery mode进入Recovery Menu界面&#xff0c; 选择root Drop to root shell prompt* 3.修改root密码操作&#xff1a; #passwd 输入新密码&#xff1a;# 再输入一遍密码&…

LLM之本地部署GraphRAG(GLM-4+Xinference的embedding模型)(附带ollma部署方式)

前言 有空再写 微软开源的GraphRAG默认是使用openai的接口的&#xff08;GPT的接口那是要money的&#xff09;&#xff0c;于是就研究了如何使用开源模型本地部署。 源码地址&#xff1a;https://github.com/microsoft/graphrag 操作文档&#xff1a;https://microsoft.git…

springBoot+protobuf(全程Protocol Buffers协议)简单入门

了解Protocol Buffers协议 Protocal Buffers是google推出的一种序列化协议&#xff0c;用于结构化的数据序列化、反序列化。 官方解释&#xff1a;Protocol Buffers 是一种语言无关、平台无关、可扩展的序列化结构数据的方法&#xff0c;它可用于&#xff08;数据&#xff09;通…

鸿蒙(API 12 Beta2版)NDK开发【使用Node-API接口进行异步任务开发】

使用Node-API接口进行异步任务开发 场景介绍 napi_create_async_work是Node-API接口之一&#xff0c;用于创建一个异步工作对象。可以在需要执行耗时操作的场景中使用&#xff0c;以避免阻塞主线程&#xff0c;确保应用程序的性能和响应性能。例如以下场景&#xff1a; 文件…

入门 PyQt6 看过来(案例)17~ 表格

PyQt6提供了两种用于有规律地呈现更多数据的控件&#xff0c;一种是表格结构的控件(QTableView)&#xff0c;另一种是树形结构的控件(QTreeView)。表格控件属于QTableView类&#xff0c;QTableWidget继承于QTableView。 1 QTableView 表格控件 QTableView控件中QStandItemMod…