NLP-使用Word2vec实现文本分类

Word2Vec模型通过学习大量文本数据,将每个单词表示为一个连续的向量,这些向量可以捕捉单词之间的语义和句法关系。本文做文本分类是结合Word2Vec文本内容text,预测其文本标签label。以下使用mock商品数据的代码实现过程过下:

1、准备数据

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)tmp = spark.sql("""
select sku_name,scenefrom dmb_rpt.dmb_jdt_dmbrpt_items_attribute_a_det_m  where dt='2024-07-15'
group by sku_name,scene
""")
tmp.show(2, False)corpus_file = 'large_corpus_sku_name_and_category.txt'
tmp.toPandas().to_csv(corpus_file, sep=',', index=False, mode='w',header=False )

2、加载数据

import pandas as pd# 加载自定义中文数据
train_data = pd.read_csv(corpus_file, sep=',', header=None)
print("train data:",train_data[:5])# 构造数据集迭代器
def coustom_data_iter(texts, labels):for x, y in zip(texts, labels):yield x, yx = train_data[0].values[:]
#多类标签的one-hot展开
y = train_data[1].values[:]
print("x[:5]:\n",x[:5])
print("y[:5]:\n",y[:5])

3、训练 Word2Vec 模型

from gensim.models.word2vec import Word2Vec
import numpy as np# 训练 Word2Vec 浅层神经网络模型
w2v = Word2Vec(vector_size=100, #是指特征向量的维度,默认为100。min_count=3)     #可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5。w2v.build_vocab(x)
w2v.train(x,                         total_examples=w2v.corpus_count, epochs=20)# Word2Vec可以直接训练模型,一步到位。这里分了三步
# 第一步构建一个空模型
# 第二步使用 build_vocab 方法根据输入的文本数据 x 构建词典。build_vocab 方法会统计输入文本中每个词汇出现的次数,并按照词频从高到低的顺序将词汇加入词典中。
# 第三步使用 train 方法对模型进行训练,total_examples 参数指定了训练时使用的文本数量,这里使用的是 w2v.corpus_count 属性,表示输入文本的数量# 保存 Word2Vec 模型及词向量
w2v.save('w2v_model.pkl')

4、搭建文本分类模型

4.1 查看文本分类
# 查看分类
label_name = list(set(train_data[1].values[:]))
print(label_name)

4.2 定义文本向量处理函数
# 将文本转化为向量
def average_vec(text):vec = np.zeros(100).reshape((1, 100))for word in text:try:vec += w2v.wv[word].reshape((1, 100))except KeyError:continuereturn vec# 这段代码定义了一个函数 average_vec(text),它接受一个包含多个词的列表 text 作为输入,并返回这些词对应词向量的平均值。该函数# 首先初始化一个形状为 (1, 100) 的全零 numpy 数组来表示平均向量
# 然后遍历 text 中的每个词,并尝试从 Word2Vec 模型 w2v 中使用 wv 属性获取其对应的词向量。如果在模型中找到了该词,函数将其向量加到 vec 中。如果未找到该词,函数会继续迭代下一个词
# 最后,函数返回平均向量 vec# 然后使用列表推导式将 average_vec() 函数应用于列表 x 中的每个元素。得到的平均向量列表使用 np.concatenate() 连接成一个 numpy 数组 x_vec,
# 该数组表示 x 中所有元素的平均向量。x_vec 的形状为 (n, 100),其中 n 是 x 中元素的数量。# 定义文本向量为词向量的avg
text_pipeline  = lambda x: average_vec(x)
# 根据分类index查找分类名称
label_pipeline = lambda x: label_name.index(x)print(text_pipeline("茅台贵州"))
print(label_pipeline("聚会"))

4.3 搭建文本分类模型
from torch.utils.data import DataLoaderdef collate_batch(batch):label_list, text_list= [], []for (_text, _label) in batch:# 标签列表label_list.append(label_pipeline(_label))# 文本列表processed_text = torch.tensor(text_pipeline(_text), dtype=torch.float32)text_list.append(processed_text)label_list = torch.tensor(label_list, dtype=torch.int64)text_list  = torch.cat(text_list)return text_list.to(device),label_list.to(device)from torch import nn# 模型搭建
class TextClassificationModel(nn.Module):def __init__(self, num_class):super(TextClassificationModel, self).__init__()self.fc = nn.Linear(100, num_class)def forward(self, text):return self.fc(text)# 训练和评估
import timedef train(dataloader):model.train()  # 训练模式total_acc, train_loss, total_count = 0, 0, 0log_interval = 50start_time   = time.time()for idx, (text,label) in enumerate(dataloader):predicted_label = model(text)optimizer.zero_grad()                    # grad属性归零loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值loss.backward()                          # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度裁剪optimizer.step()  # 每一步自动更新# 记录acc与losstotal_acc   += (predicted_label.argmax(1) == label).sum().item()train_loss  += loss.item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:1d} | {:4d}/{:4d} batches ''| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx,len(dataloader),total_acc/total_count, train_loss/total_count))total_acc, train_loss, total_count = 0, 0, 0start_time = time.time()def evaluate(dataloader):model.eval()  # 测试模式total_acc, train_loss, total_count = 0, 0, 0with torch.no_grad():for idx, (text,label) in enumerate(dataloader):predicted_label = model(text)loss = criterion(predicted_label, label)  # 计算loss值# 记录测试数据total_acc   += (predicted_label.argmax(1) == label).sum().item()train_loss  += loss.item()total_count += label.size(0)return total_acc/total_count, train_loss/total_count

4.4 加载数据,模型训练
# !pip install torchtext
import math
from torch.utils.data.dataset  import random_split
from torchtext.data.functional import to_map_style_dataset# 初始化
num_class  = len(label_name)
vocab_size = 100000
em_size    = 12
model      = TextClassificationModel(num_class).to(device)# 超参数
EPOCHS     = 10 # epoch
LR         = 5  # 学习率
BATCH_SIZE = 64*6 # batch size for trainingcriterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None# 构建数据集
train_iter    = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)split_train_, split_valid_ = random_split(train_dataset, [math.floor(len(train_dataset)  *0.8),  math.ceil(len(train_dataset) *0.2)])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)val_acc, val_loss = evaluate(valid_dataloader)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']if total_accu is not None and total_accu > val_acc:scheduler.step()else:total_accu = val_accprint('-' * 69)print('| epoch {:1d} | time: {:4.2f}s | ''valid_acc {:4.3f} valid_loss {:4.3f} | lr {:4.6f}'.format(epoch,time.time() - epoch_start_time,val_acc,val_loss,lr))print('-' * 69)

4.5 模型评价
test_acc, test_loss = evaluate(valid_dataloader)
print('模型准确率为:{:5.4f}'.format(test_acc))
模型准确率为:0.6767
4.6 模型文本分类预测
def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text), dtype=torch.float32)print(text.shape)print("==>:", text)output = model(text)return output.argmax(1).item()model = model.to("cpu")for ex_text_str in ["【浓香】五粮液甲辰龙年纪念酒(5瓶装)", "【浓香】五粮液财富人生蓝钻", "【酱香】茅台集团 茅乡名家名作酒", "【浓香】五粮液囍祥瑞添福文化酒"]:print("该商品适合的场景是:%s" %label_name[predict(ex_text_str, text_pipeline)])

Done

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3269563.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

干货|永久免费SSL证书申请——七步实现网站HTTPS

在数字化时代,网站的安全性成为了衡量其专业性和可信度的重要标准之一。启用HTTPS协议,即通过安装SSL证书,可以确保数据在用户浏览器和服务器之间传输时的加密性,保护用户隐私和数据安全。对于个人博客、小型企业或预算有限的组织…

最佳CEO的钱袋子道出了哪些财富密码?

被贴上“华尔街史上经营最成功的基金经理人之一”、“投资天才”等标签的迈克尔斯坦哈特曾说过:保持相对机敏,要随时研究可能带来财富的一切领域,要比别人更早感知大势的变化。 但问题是,其中的“可能带来财富的一切领域”又该如…

Ubuntu18中MySQL的安装

文章目录 一、背景说明二、安装步骤2.1、安装包的获取2.2、解压并移动2.3、创建用户和用户组2.4、给数据目录赋权限2.5、配置my.conf2.6、初始化MySQL2.7、启动MySQL服务2.8、修改root用户密码2.9、创建外网访问用户2.10、设置开机启动 三、问题3.1、如何查看用户组和用户&…

【C++刷题】优选算法——队列+宽搜

N 叉树的层序遍历 vector<vector<int>> levelOrder(Node* root) {vector<vector<int>> ret;if (root nullptr) return ret;queue<Node*> q;q.push(root);ret.push_back({root->val});int size 1;while (!q.empty()) {vector<int> v…

深入解读 Java 中的 `StringUtils.isNotBlank` 与 `StringUtils.isNotEmpty`

个人名片 🎓作者简介:java领域优质创作者 🌐个人主页:码农阿豪 📞工作室:新空间代码工作室(提供各种软件服务) 💌个人邮箱:[2435024119@qq.com] 📱个人微信:15279484656 🌐个人导航网站:www.forff.top 💡座右铭:总有人要赢。为什么不能是我呢? 专栏导…

Windows Server搭建局域网NTP时间服务器与客户端通实现

1.服务器环境&#xff1a; win11更改注册表 winR输入regedit win11更改注册表 winR输入regedit 2.HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config&#xff0c;找到Config目录&#xff0c;双击Config目录下的AnnounceFlags&#xff0c;设为5。 3.HKEY_L…

简单几步,教你使用scikit-learn做分类和回归预测

经常听到初学python的小伙伴在抱怨&#xff0c;python安装第三方库太慢&#xff0c;很容易失败报错&#xff0c;如果安装pandas、tensorflow这种体积大的库&#xff0c;简直龟速。 为什么pip会很慢&#xff1f; 先来了解下pip&#xff0c;pip是一个非常流行的python包管理工具…

C语言数组练习--扫雷

一.游戏规则 扫雷的基本规则&#xff1a; 点击方格&#xff0c;如果是地雷&#xff0c;游戏失败&#xff1b;找到所有方格而不踩到地雷则游戏胜利。左键翻开方格&#xff0c;右键标记地雷。双击左键&#xff08;或者左右键一起点&#xff09;可以看到数字的可点击范围。数字表示…

Temu卖家必读:测评补单策略,提升销量与转化率!

拼多多旗下的跨境电商平台Temu&#xff0c;凭借其独特的广告和低价策略&#xff0c;迅速在美国市场站稳脚跟&#xff0c;并在欧美市场取得初步成功后&#xff0c;马不停蹄地迈向了更广阔的海外市场。去年七月&#xff0c;Temu正式进军亚洲市场&#xff0c;日本与韩国成为其首批…

redis:清除缓存的最简单命令示例

清除redis缓存命令(执行命令列表见截图) 1.打开cmd窗口&#xff0c;并cd进入redis所在目录 2.登录redis redis-cli 3.查询指定队列当前的记录数 llen 队列名称 4.清除指定队列所有记录 ltrim 队列名称 1 0 5.再次查询&#xff0c;确认队列的记录数是否已清除

MySQL练习(5)

作业要求&#xff1a; 实现过程&#xff1a; 一、触发器 &#xff08;1&#xff09;建立两个表&#xff1a;goods&#xff08;商品表&#xff09;、orders&#xff08;订单表&#xff09; &#xff08;2&#xff09;在商品表中导入商品记录 &#xff08;3&#xff09;建立触发…

Milvus × RAG助力快看多业务应用

快看介绍 快看漫画创办于2014年&#xff0c;集漫画阅读、创作互动、线下漫画沉浸体验、周边衍生品购买等体验于一体&#xff0c;是年轻人的一站式漫画生活方式平台。截止到2023年底&#xff0c;快看总用户超过3.8亿&#xff0c;在中国漫画市场渗透率超过50%。经过9年的创作者生…

Linux:文件管理(文件信息、文件类型、访问权限、文件压缩和解压、文件查找)

文件管理 (1)查看文件信息 查看文件的权限&#xff08;读写和执行&#xff09;、文件所属用户和文件所属组、文件大小、文件创建时间、文件名称等 ls -lahF l表示文件属性&#xff1b;F表示目录后面添加/&#xff1b;a表示显示隐藏的文件&#xff1b;h表示以友好的方式显示文件…

GLSL教程 第4章:编写第一个片段着色器

目录 4.1 片段着色器的作用 4.2 片段输出和颜色 4.3 编写第一个片段着色器的步骤 4.4 实际应用和调试 小结 在本章中&#xff0c;我们将学习如何编写一个基本的片段着色器。片段着色器是图形管线中的关键阶段&#xff0c;负责处理图形渲染中的每个像素&#xff08;即片段&…

【图论】Bellman-Ford

算法-Bellman-Ford 前置知识 图论 思路 Bellman-Ford 是一种单源最短路算法&#xff0c;可以得到一个不含有负环的图上由一个点出发的最短路&#xff08;即单源最短路&#xff09;。 我们记录 d d d 数组为距离数组。 每次我们遍历每一条边 ( u , v , w ) (u,v,w) (u,v,w)&…

【Java基础系列】RBAC:介绍与原理

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

为什么多数大数据治理项目都是失败的?Gartner调查失败率超过90%

引言&#xff1a;随着数据规模的爆发式增长、数据价值的凸显以及数据治理的必要性。在政策的推动、市场需求的拉动以及技术进步的支撑下&#xff0c;大数据治理正成为推动企业数字化转型、提升数据价值的重要手段。企业希望通过大数据治理提升数据利用率和数据价值&#xff0c;…

0719_驱动2 编写编译linux内核模块

一、编写linux内核模块 linux内核模块三要素&#xff1a; 入口&#xff1a;执行insmod 安装命令操作 出口&#xff1a; 执行rmmod 卸载命令操作 许可证&#xff1a;遵循GPL协议&#xff0c;开源&#xff0c;指定入口地址&#xff0c;出口地址 #include <linux/init.h> #i…

Nginx中WebSocket配置说明

查看 laravel 的 swool扩展文档时遇到不懂的&#xff0c;问了文心一言 https://gitee.com/resourcesplus/laravel-s/#%E5%90%AF%E7%94%A8websocket%E6%9C%8D%E5%8A%A1%E5%99%A8 nginx语法中 upstream 和 proxy_pass 用法

【秋招突围】2024届秋招笔试-美团笔试题-第一套-三语言题解(Java/Cpp/Python)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新 美团 春秋招笔试题**汇总~ 👏 感谢大家的订阅➕ 和 喜欢💗 01.LYA 的音乐播放列表 问题描述 LYA 有一个包含 n n n 首歌曲的音乐播放列表,歌曲编号从 1 1