基于YOLO8的目标检测系统:开启智能视觉识别之旅

文章目录

  • 在线体验
  • 快速开始
  • 一、项目介绍篇
    • 1.1 YOLO8
    • 1.2 ultralytics
    • 1.3 模块介绍
      • 1.3.1 scan_task
      • 1.3.2 scan_taskflow.py
      • 1.3.3 target_dec_app.py
  • 二、核心代码介绍篇
    • 2.1 target_dec_app.py
    • 2.2 scan_taskflow.py
  • 三、结语

在线体验

  • 基于YOLO8的目标检测系统



  • 基于opencv的摄像头实时目标检测

快速开始

  1. 创建anaconda环境
conda create -n XXX python=3.10
  1. pytorch安装
# 查看cuda版本(示例为:11.8)
nvcc -V

# 安装对应版本的pytorch
# 官网:https://pytorch.org/# pip安装
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118# conda安装,建议配置conda国内镜像源
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

  1. 其他依赖包安装
pip install -r ./requirements-target-dec.txt
  1. 网页界面如下,可在示例图片中快速进行试验

一、项目介绍篇

在人工智能和机器学习的浪潮中,YOLO8作为目标检测领域的一颗新星,以其卓越的性能和灵活性,受到了广泛关注。本项目基于YOLO8算法,构建了一个高效、易用的目标检测系统,旨在为用户提供一个强大的本地部署解决方案。通过精心设计的界面和丰富的功能,用户可以轻松实现目标检测任务,无论是在网页端还是本地计算机上。

1.1 YOLO8

  • YOLO8是新一代的目标检测算法,由YOLO(You Only Look Once)系列发展而来。它继承了YOLO算法快速、高效的特点,并在此基础上进行了改进和优化,以适应更复杂的目标检测任务。YOLO8通过引入新的网络结构和训练策略,提高了检测的准确性和鲁棒性,尤其是在小目标和遮挡目标的检测上表现出色。
  • YOLO8算法的关键创新包括:
    1. 改进的网络结构:YOLO8采用了更深层次的卷积神经网络,增强了特征提取的能力,使得模型能够更准确地识别和定位目标。
    2. 优化的锚框机制:通过优化锚框的设计,YOLO8能够更好地适应不同形状和大小的目标,减少了误检和漏检的情况。
    3. 增强的数据增强技术:YOLO8使用了更先进的数据增强方法,提高了模型对不同环境和条件的泛化能力。
    4. 高效的训练策略:YOLO8引入了新的损失函数和训练技巧,加快了模型的收敛速度,同时保持了检测性能。
  • YOLO8的这些改进使得它在实时性要求高的应用场景中,如视频监控、自动驾驶等领域,具有广泛的应用前景。尽管YOLO8的具体细节和性能指标尚未完全公开,但其在目标检测领域的潜力已经引起了业界的广泛关注。

1.2 ultralytics

  • Ultraalytics是一家专注于计算机视觉和人工智能技术的公司,以其开发的高性能目标检测模型YOLO(You Only Look Once)而闻名。YOLO模型以其快速和准确的目标检测能力在业界获得了广泛认可,特别是在需要实时处理的场合,如视频监控、自动驾驶和工业自动化等领域。
  • Ultraalytics的YOLO算法通过单次前向传播即可预测图像中的物体位置和类别,与传统的多步骤检测方法相比,大大提高了检测速度。随着YOLO算法的迭代发展,Ultraalytics不断推出新版本,如YOLOv3、YOLOv4、YOLOv5等,每个版本都在准确性、速度和易用性方面进行了优化。
  • 除了目标检测,Ultraalytics还提供其他AI解决方案,包括图像分割、数据标注工具和模型部署服务。公司致力于推动AI技术的创新和应用,帮助企业实现智能化转型。Ultraalytics的技术和产品因其高效性和可靠性,在全球范围内拥有众多用户和合作伙伴。

1.3 模块介绍

image.png

1.3.1 scan_task

  • 构建了执行的任务,用于为scan_taskflow提供可执行对象

1.3.2 scan_taskflow.py

  • 基于open-cv2的本地界面系统

1.3.3 target_dec_app.py

  • gradio页面代码

二、核心代码介绍篇

2.1 target_dec_app.py

import cv2
import gradio as gr
from scan_task import ScanTargetDecscan_model = ScanTargetDec(version='YOLOv8n', use_gpu=False)def target_scan(frame):frame, _ = scan_model.run(frame, text_size=50)'''run方法其他可传参数text_color: 显示文字颜色 默认:(0, 0, 255)text_size: 显示文字大小 默认:20y_pos: y轴位置偏移量 默认:0'''return frameif __name__ == '__main__':examples = [[cv2.imread('./examples/image_detection.jpg')]]with gr.Blocks() as demo:with gr.Tabs():# 图片目标检测with gr.Tab(label='图片目标检测') as tab1:gr.Markdown(value="# 图片目标检测")with gr.Row(variant="panel"):with gr.Column():img_input1 = gr.Image(label="上传图片输入", mirror_webcam=False)with gr.Row(variant="panel"):submit_bn1 = gr.Button(value='上传')clear_bn1 = gr.ClearButton(value='清除')img_out1 = gr.Image(label="目标检测输出", mirror_webcam=False)# 添加演示用例gr.Examples(label='上传示例图片', examples=examples, fn=target_scan,inputs=[img_input1],outputs=[img_out1],cache_examples=False)submit_bn1.click(fn=target_scan, inputs=img_input1, outputs=img_out1)clear_bn1.add([img_input1, img_out1])# 摄像头实时目标检测with gr.Tab(label='摄像头实时目标检测') as tab3:gr.Markdown(value="# 摄像头实时目标检测")with gr.Column(variant='panel') as demo_scan:with gr.Row(variant="panel"):img_input3 = gr.Image(label="实时输入", sources=["webcam"],mirror_webcam=False, streaming=True)img_out3 = gr.Image(label="目标检测输出", sources=["webcam"],mirror_webcam=False, streaming=True)img_input3.stream(fn=target_scan, inputs=img_input3, outputs=img_out3)demo.launch()
  1. 此段代码主要是用于生成前端页面,以及配置按钮点击事件触发时的回调函数
  2. 可配置参数包括:use_gputext_colortext_sizey_pos
    1. use_gpu: 是否使用gpu
    2. text_color:定位的二维码,显示文字颜色 默认:(0, 0, 255)
    3. text_size:定位的二维码,显示文字大小 默认:20
    4. y_pos:y轴位置偏移量 默认:0

2.2 scan_taskflow.py

class ScanTaskflow:def __init__(self, task: str, video_index=0, win_name='Scan XXX', win_width=800, win_height=600, **kwargs):..初始化摄像头扫描对象,设置窗口尺寸等属性..def run(self, **kwargs):..开启摄像头,进行检测任务..if __name__ == '__main__':# 启动默认的目标检测系统scanTaskflow = ScanTaskflow(task='scan_target_dec',version='YOLOv8n', use_gpu=True,video_index=0, win_name='target_dec',win_width=640, win_height=480)scanTaskflow.run(text_color=(0, 255, 0), y_pos=0)
  1. __init__ 用于预加载项目所需模型
  2. run 是检测系统的核心方法,用于将视频的实时帧进行检测

三、结语

  • 本项目提供了一个基于YOLO8算法的目标检测系统,它不仅易于部署和使用,而且具备高性能和高灵活性。我们相信,随着技术的不断进步和社区的积极参与,本项目将能够为更多用户提供价值,推动目标检测技术的发展。如果您在使用过程中遇到任何问题,欢迎在ModelScope创空间-基于YOLO8的目标检测系统上提出issue,我们会及时为您解答。
  • 希望本项目能够成为您在目标检测领域的得力助手。如果您觉得本项目对您有帮助,请给项目点个star,并持续关注我的个人主页ModelBulider的个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3267447.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Provisional headers are shown Learn more

Provisional headers are shown Learn more 目录 Provisional headers are shown Learn more 【常见模块错误】 【解决方案】 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰,211科班出身,就职于医…

什么情况下的网站要使用CDN加速呢?

CDN的全称是Content Delivery Network,即内容分发网络。 CDN的通俗理解就是网站加速,CPU均衡负载,可以解决跨运营商,跨地区,服务器负载能力过低,带宽过少等带来的网站打开速度慢等问题。 原理就是在客户端…

如何解除maven打包编译的警告日志:[WARNING] 未与 -source 21 一起设置系统模块的位置

在用jdk较高的版本进行maven项目的打包编译时,经常遇到类似“[WARNING] 未与 -source 21 一起设置系统模块的位置”这样的警告日志,如下: 网上大量搜索该问题的解决方案,却未果,无耐去看了官网的用法,才获得…

Java项目中整合多个pdf合并为一个pdf

一、Java项目中整合多个pdf合并为一个pdf gitee笔记路径&#xff1a;https://gitee.com/happy_sad/drools一、依赖导入 <dependency><groupId>com.itextpdf</groupId><artifactId>itextpdf</artifactId><version>5.5.6</version> …

ts 下使用 interactjs 的时候,事件类型该如何定义 InteractEvent

ts 下使用 interactjs 的时候&#xff0c;事件类型该如何定义 InteractEvent 一、问题 interactjs 是一个很好用的给元素添加拖动事件的插件&#xff0c;它可以实现如下的效果。 其官网是 https://interactjs.io/ vitetsvue3 项目中用到了 interactjs 这个库&#xff0c;但在…

事务、函数和索引

M y S Q L 事 务 什么是事务&#xff1f; 事务&#xff08;Transaction&#xff09;&#xff0c;就是将一组SQL语句放在同一批次内去执行&#xff0c;如果一个SQL语句出错&#xff0c;则该批次内 的所有SQL都将被取消执行。 特点&#xff1a;一个事务中如果有一个数据库操作…

【Android】数据存储方案——文件存储、SharedPreferences、SQLite数据库用法总结

文章目录 文件存储存储到文件读取文件 SharedPreferences存储存储获取SharedPreferences对象Context 类的 getSharedPreferences() 方法Activity 类的 getPreferences() 方法PreferenceManager 类中的 getDefaultSharedPreferences() 方法 示例 读取记住密码的功能 SQLite数据库…

学习OCR具体使用

暂时找了三种&#xff0c;有一些问题待解决 Tesseract-OCR1. 安装库&#xff1a;2. 安装Tesseract-OCR&#xff1a;3. 安装中文语言包&#xff1a;4. Python代码&#xff1a;5. 运行结果 cnOCR1. 安装cnOCR&#xff1a;2. 使用cnOCR进行OCR&#xff1a;3. 运行结果 PaddleOCR1.…

vue 实战 区域内小组件元素拖拽 示例

<template><div><el-button type"primary" click"showDialog true">快捷布局</el-button><el-dialog title"快捷布局配置" :visible.sync"showDialog"><el-row :gutter"20"><el-co…

柯达sd卡数据丢失怎么办?分享有效数据恢复方法

随着科技的进步&#xff0c;数码相机已成为我们生活中不可或缺的一部分&#xff0c;而柯达作为摄影界的知名品牌&#xff0c;其相机及配件更是广受欢迎。然而&#xff0c;在日常使用中&#xff0c;难免会遇到数据丢失的情况&#xff0c;特别是SD卡中的数据丢失&#xff0c;常常…

大模型技术:发展历程、经典模型、微调与应用[更新中...]

文章目录 一、预训练语言模型发展历程二、经典的Pre-trained任务2.1 Masked Language Modeling2.2 Next Sentence Prediction 三、Task-specific Fine-tuning 任务3.1 Single-text Classification (单句分类)3.2 Sentence-pair Classification (句子匹配/成对分类)3.3 Span Tex…

Java3-final,singleInstance,enum

final可以用来修饰类、方法、变量 public static final -- 修饰常量 singleInstance-单例&#xff1b;一个类永远只存在一个对象 1、饿汉单例&#xff1b; --通过类获取单例对象的时候&#xff0c;对象已经提前做好了 --实现&#xff1a; 2、懒汉单例 --通过类获取单例对象…

C++第二十七弹---优先级队列的高级应用:结合仿函数优化性能

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】 目录 1 priority_queue的介绍和使用 1.1 priority_queue的介绍 1.2 priority_queue的使用 2 仿函数的介绍和使用 2.1 仿函数的介绍 2.2 仿函数的…

Java的类加载机制

Java的类加载机制是指将类的字节码文件&#xff08;.class文件&#xff09;加载到JVM中并将其转换为Class对象的过程。这个过程由类加载器&#xff08;ClassLoader&#xff09;完成。Java的类加载机制具有动态性和灵活性&#xff0c;使得Java能够支持动态加载类、实现模块化开发…

C++ 八股(2)

1.函数调用的参数是以什么顺序压栈的&#xff0c;为什么&#xff1f; 从右向左压栈的。因为C, C支持可变参函数。 可变参函数就是参数个数可变的函数&#xff0c;如printf()就是可变参函数 void func(int a,...){} 2.有一个函数 在main函数中通过&#xff1a;string s fun…

数据库-触发器,存储过程

按照题目要求完成下列题目&#xff1a; 1.触发器 mysql> use mydb16_trigger; Database changed mysql> create table goods(-> gid char(8) primary key,-> name varchar(10),-> price decimal(8,2),-> num int); Query OK, 0 rows affected (0.01 sec)my…

工作流 Flowable

工作流包括业务流和审批流等业务流程。 在一个流程系统中&#xff0c;任务间往往存在复杂的依赖关系&#xff0c;为保证pipeline的正确执行&#xff0c;就是要解决各任务间依赖的问题&#xff0c;这样DAG结合拓扑排序是解决存在依赖关系的一类问题的利器。DAG ( Directed Acyc…

免费【2024】springboot 毕业生学历证明系统

博主介绍&#xff1a;✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌ 技术范围&#xff1a;SpringBoot、Vue、SSM、HTML、Jsp、PHP、Nodejs、Python、爬虫、数据可视化…

Android AI应用开发:移动检测

基于Google ML模型的Android移动物体检测应用——检测、跟踪视频中的物体 A. 项目描述 ML Kit物体检测器可以对视频流进行操作&#xff0c;能够检测视频中的物体并在连续视频帧中跟踪该物体。 相机捕捉视频时&#xff0c;检测到移动物体并为其生成一个边界框&#xff0c;并分…

微信小程序-本地部署(前端)

遇到问题&#xff1a;因为是游客模式所以不能修改appID. 参考链接&#xff1a;微信开发者工具如何从游客模式切换为开发者模式&#xff1f;_微信开发者工具如何修改游客模式-CSDN博客 其余参考&#xff1a;Ego微商项目部署&#xff08;小程序项目&#xff09;&#xff08;全网…