【Golang 面试基础题】每日 5 题(七)

✍个人博客:Pandaconda-CSDN博客
📣专栏地址:http://t.csdnimg.cn/UWz06

📚专栏简介:在这个专栏中,我将会分享 Golang 面试中常见的面试题给大家~
❤️如果有收获的话,欢迎点赞👍收藏📁,您的支持就是我创作的最大动力💪

 31. Go Map 查找

在 Go 语言中,使用 map 查找一个键值对的过程可以通过 map[key] 来完成,返回值是对应的值和一个表示是否存在的布尔值。

具体来说,如果 map 中存在该键,则返回对应的值和布尔值 true;如果不存在该键,则返回值类型的零值和布尔值 false。例如:

m := make(map[string]int)
m["apple"] = 1
value, ok := m["apple"]
if ok {fmt.Println(value) // 输出 1
}

另外,也可以直接使用一个值来获取键值对中的值,但是如果键值对中不存在该键,会返回该值类型的零值。例如:

m := make(map[string]int)
m["apple"] = 1
value := m["banana"]
fmt.Println(value) // 输出 0

需要注意的是,map 的键类型必须支持相等运算,例如,数字、字符串、指针、通道、接口类型、结构体类型等都是支持的,但是数组、切片、函数类型等不支持。

底层实现

在 Golang 中,Map 的查找是通过哈希表实现的。当程序执行 map 查找操作时,会先根据哈希函数将 key 转换成一个哈希值,然后在哈希表中查找该哈希值对应的桶 (bucket),再在桶中查找对应的键值对。

具体来说,当 Map 中的键值对数量超过一定阈值时,会触发自动扩容操作。扩容操作会重新分配更大的桶数组,并将原有的键值对重新哈希分布到新的桶中。

在查找时,Golang 的 Map 会先通过哈希值定位到对应的桶 (bucket),然后在桶中遍历链表(每个桶可能对应多个键值对)查找对应的键值对。在遍历链表的过程中,如果发现某个键值对的 key 与要查找的 key 相等,则返回该键值对的 value。

需要注意的是,如果 Map 中的键值对过多,桶中的链表会很长,查找时效率会降低,因此需要根据实际情况合理设置 Map 的容量和哈希函数,以充分利用哈希表的优势。同时,当 Map 中的键值对类型为复杂类型(如结构体)时,需要重载对应的哈希函数和比较函数,以确保哈希表的正确性。

32. Go Ma p 如何查找?

Go 语言中读取 map 有两种语法:带 comma 和 不带 comma。当要查询的 key 不在 map 里,带 comma 的用法会返回一个 bool 型变量提示 key 是否在 map 中;而不带 comma 的语句则会返回一个 value 类型的零值。如果 value 是 int 型就会返回 0,如果 value 是 string 类型,就会返回空字符串。

// 不带 comma 用法
value := m["name"]
fmt.Printf("value:%s", value)// 带 comma 用法
value, ok := m["name"]
if ok {fmt.Printf("value:%s", value)
}

map 的查找通过生成汇编码可以知道,根据 key 的不同类型/返回参数,编译器会将查找函数用更具体的函数替换,以优化效率:

key 类型查找
uint32mapaccess1_fast32(t maptype, h hmap, key uint32) unsafe.Pointer
uint32mapaccess2_fast32(t maptype, h hmap, key uint32) (unsafe.Pointer, bool)
uint64mapaccess1_fast64(t maptype, h hmap, key uint64) unsafe.Pointer
uint64mapaccess2_fast64(t maptype, h hmap, key uint64) (unsafe.Pointer, bool)
stringmapaccess1_faststr(t maptype, h hmap, ky string) unsafe.Pointer
stringmapaccess2_faststr(t maptype, h hmap, ky string) (unsafe.Pointer, bool)

查找流程

  

 1. 写保护监测

函数首先会检查 map 的标志位 flags。如果 flags 的写标志位此时被置 1 了,说明有其他协程在执行“写”操作,进而导致程序 panic,这也说明了 map 不是线程安全的。

if h.flags&hashWriting != 0 {throw("concurrent map read and map write")
}

2. 计 算 hash 值

hash := t.hasher(key, uintptr(h.hash0))

key 经过哈希函数计算后,得到的哈希值如下(主流 64 位机下共 64 个 bit 位),不同类型的 key 会有不同的 hash 函数。

 10010111 | 000011110110110010001111001010100010010110010101010 │ 01010

3. 找 到 hash 对应的 bucket

bucket 定位:哈希值的低 B 个 bit 位,用来定位 key 所存放的 bucket。

如果当前正在扩容中,并且定位到的旧 bucket 数据还未完成迁移,则使用旧的 bucket(扩容前的 bucket)。

hash := t.hasher(key, uintptr(h.hash0))
// 桶的个数m-1,即 1<<B-1,B=5时,则有0~31号桶
m := bucketMask(h.B)
// 计算哈希值对应的bucket
// t.bucketsize为一个bmap的大小,通过对哈希值和桶个数取模得到桶编号,通过对桶编号和buckets起始地址进行运算,获取哈希值对应的bucket
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
// 是否在扩容
if c := h.oldbuckets; c != nil {// 桶个数已经发生增长一倍,则旧bucket的桶个数为当前桶个数的一半if !h.sameSizeGrow() {// There used to be half as many buckets; mask down one more power of two.m >>= 1}// 计算哈希值对应的旧bucketoldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))// 如果旧bucket的数据没有完成迁移,则使用旧bucket查找if !evacuated(oldb) {b = oldb}
}

4. 遍 历 bucket 查找

tophash 值定位:哈希值的高 8 个 bit 位,用来快速判断 key 是否已在当前 bucket 中(如果不在的话,需要去 bucket 的 overflow 中查找)。

用步骤 2 中的 hash 值,得到高 8 个 bit 位,也就是 10010111,转化为十进制,也就是 151

top := tophash(hash)
func tophash(hash uintptr) uint8 {top := uint8(hash >> (goarch.PtrSize*8 - 8))if top < minTopHash {top += minTopHash}return top
}

上面函数中 hash 是 64 位的,sys.PtrSize 值是 8,所以 top := uint8(hash >> (sys.PtrSize*8 - 8)) 等效 top = uint8(hash >> 56),最后 top 取出来的值就是 hash 的高 8 位值。

在 bucket 及 bucket 的 overflow 中寻找 tophash 值(HOB hash)为 151* 的 槽位,即为 key 所在位置,找到了空槽位或者 2 号槽位,这样整个查找过程就结束了,其中找到空槽位代表没找到。

for ; b != nil; b = b.overflow(t) {for i := uintptr(0); i < bucketCnt; i++ {if b.tophash[i] != top {// 未被使用的槽位,插入if b.tophash[i] == emptyRest {break bucketloop}continue}// 找到tophash值对应的的keyk := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))if t.key.equal(key, k) {e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))return e}}}

  

5. 返回 key 对应的指针

如果通过上面的步骤找到了 key 对应的槽位下标 i,我们再详细分析下 key/value 值是如何获取的:

// keys的偏移量
dataOffset = unsafe.Offsetof(struct{b bmapv int64
}{}.v)// 一个bucket的元素个数
bucketCnt = 8// key 定位公式
k :=add(unsafe.Pointer(b),dataOffset+i*uintptr(t.keysize))// value 定位公式
v:= add(unsafe.Pointer(b),dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))

bucket 里 keys 的起始地址就是 unsafe.Pointer(b)+dataOffset。

第 i 个下标 key 的地址就要在此基础上跨过 i 个 key 的大小;

而我们又知道,value 的地址是在所有 key 之后,因此第 i 个下标 value 的地址还需要加上所有 key 的偏移。

33. Go Map 冲突的解决方式?

比较常用的 Hash 冲突解决方案有链地址法和开放寻址法:

1. 链地址法

当哈希冲突发生时,创建新单元,并将新单元添加到冲突单元所在链表的尾部。

2. 开放寻址法

当哈希冲突发生时,从发生冲突的那个单元起,按照一定的次序,从哈希表中寻找一个空闲的单元,然后把发生冲突的元素存入到该单元。开放寻址法需要的表长度要大于等于所需要存放的元素数量

开放寻址法有多种方式:线性探测法、平方探测法、随机探测法和双重哈希法。这里以线性探测法来帮助读者理解开放寻址法思想。

线性探测法

Hash(key) 表示关键字 key 的哈希值, 表示哈希表的槽位数(哈希表的大小)。

线性探测法则可以表示为:

如果 Hash(x) % M 已经有数据,则尝试 (Hash(x) + 1) % M ;

如果 (Hash(x) + 1) % M 也有数据了,则尝试 (Hash(x) + 2) % M ;

如果 (Hash(x) + 2) % M 也有数据了,则尝试 (Hash(x) + 3) % M ;

两种解决方案比较

对于链地址法,基于数组 + 链表进行存储,链表节点可以在需要时再创建,不必像开放寻址法那样事先申请好足够内存,因此链地址法对于内存的利用率会比开方寻址法高。链地址法对装载因子的容忍度会更高,并且适合存储大对象、大数据量的哈希表。而且相较于开放寻址法,它更加灵活,支持更多的优化策略,比如可采用红黑树代替链表。但是链地址法需要额外的空间来存储指针。

对于开放寻址法,它只有数组一种数据结构就可完成存储,继承了数组的优点,对 CPU 缓存友好,易于序列化操作。但是它对内存的利用率不如链地址法,且发生冲突时代价更高。当数据量明确、装载因子小,适合采用开放寻址法。

总结

在发生哈希冲突时,Python 中 dict 采用的开放寻址法,Java 的 HashMap 采用的是链地址法,而 Go map 也采用链地址法解决冲突,具体就是插入 key 到 map 中时,当 key 定位的桶填满 8 个元素后(这里的单元就是桶,不是元素),将会创建一个溢出桶,并且将溢出桶插入当前桶所在链表尾部。

if inserti == nil {// all current buckets are full, allocate a new one.newb := h.newoverflow(t, b)// 创建一个新的溢出桶inserti = &newb.tophash[0]insertk = add(unsafe.Pointer(newb), dataOffset)elem = add(insertk, bucketCnt*uintptr(t.keysize))
}

34. Go Map 的负载因子为什么是 6.5?

什么是负载因子?

负载因子(load factor),用于衡量当前哈希表中空间占用率的核心指标,也就是每个 bucket 桶存储的平均元素个数。

负载因子 = 哈希表存储的元素个数/桶个数

另外负载因子与扩容、迁移等重新散列(rehash)行为有直接关系:

  • 在程序运行时,会不断地进行插入、删除等,会导致 bucket 不均,内存利用率低,需要迁移。

  • 在程序运行时,出现负载因子过大,需要做扩容,解决 bucket 过大的问题。

负载因子是哈希表中的一个重要指标,在各种版本的哈希表实现中都有类似的东西,主要目的是为了平衡 buckets 的存储空间大小和查找元素时的性能高低

在接触各种哈希表时都可以关注一下,做不同的对比,看看各家的考量。

为什么是 6.5?

为什么 Go 语言中哈希表的负载因子是 6.5,为什么不是 8 ,也不是 1。这里面有可靠的数据支撑吗?

测试报告

实际上这是 Go 官方的经过认真的测试得出的数字,一起来看看官方的这份测试报告。

报告中共包含 4 个关键指标,如下:

loadFactor%overflowbytes/entryhitprobemissprobe
42.1320.7734
4.54.0517.33.254.5
56.8514.773.55
5.510.5512.943.755.5
615.2711.6746
6.520.910.794.256.5
727.1410.154.57
7.534.039.734.757.5
841.19.458

  • loadFactor:负载因子,也有叫装载因子。

  • %overflow:溢出率,有溢出 bukcet 的百分比。

  • bytes/entry:平均每对 key/value 的开销字节数.

  • hitprobe:查找一个存在的 key 时,要查找的平均个数。

  • missprobe:查找一个不存在的 key 时,要查找的平均个数。

选择数值

Go 官方发现:装载因子越大,填入的元素越多,空间利用率就越高,但发生哈希冲突的几率就变大。反之,装载因子越小,填入的元素越少,冲突发生的几率减小,但空间浪费也会变得更多,而且还会提高扩容操作的次数。

根据这份测试结果和讨论,Go 官方取了一个相对适中的值,把 Go 中的 map 的负载因子硬编码为 6.5,这就是 6.5 的选择缘由。

这意味着在 Go 语言中,当 map存储的元素个数大于或等于 6.5 * 桶个数 时,就会触发扩容行为

35. Go Map 的底层实现原理

Go 中的 map 是一个指针,占用 8 个字节,指向 hmap 结构体。

源码包中 src/runtime/map.go 定义了 hmap 的数据结构:

hmap 包含若干个结构为 bmap 的数组,每个 bmap 底层都采用链表结构,bmap 通常叫其 bucket。

  

hmap 结构体

// A header for a Go map.
type hmap struct {count     int // 代表哈希表中的元素个数,调用len(map)时,返回的就是该字段值。flags     uint8 // 状态标志(是否处于正在写入的状态等)B         uint8  // buckets(桶)的对数// 如果B=5,则buckets数组的长度 = 2^B=32,意味着有32个桶noverflow uint16 // 溢出桶的数量hash0     uint32 // 生成hash的随机数种子buckets    unsafe.Pointer // 指向buckets数组的指针,数组大小为2^B,如果元素个数为0,它为nil。oldbuckets unsafe.Pointer // 如果发生扩容,oldbuckets是指向老的buckets数组的指针,老的buckets数组大小是新的buckets的1/2;非扩容状态下,它为nil。nevacuate  uintptr        // 表示扩容进度,小于此地址的buckets代表已搬迁完成。extra *mapextra // 存储溢出桶,这个字段是为了优化GC扫描而设计的,下面详细介绍}

bmap 结构体

bmap 就是我们常说的 “桶”,一个桶里面会最多装 8 个 key,这些 key 之所以会落入同一个桶,是因为它们经过哈希计算后,哈希结果的低 B 位是相同的,关于 key 的定位我们在 map 的查询中详细说明。在桶内,又会根据 key 计算出来的 hash 值的高 8 位来决定 key 到底落入桶内的哪个位置(一个桶内最多有 8 个位置)。

// A bucket for a Go map.
type bmap struct {tophash [bucketCnt]uint8        // len为8的数组// 用来快速定位key是否在这个bmap中// 一个桶最多8个槽位,如果key所在的tophash值在tophash中,则代表该key在这个桶中
}

上面 bmap 结构是静态结构,在编译过程中 runtime.bmap 会拓展成以下结构体:

type bmap struct{tophash [8]uint8keys [8]keytype // keytype 由编译器编译时候确定values [8]elemtype // elemtype 由编译器编译时候确定overflow uintptr // overflow指向下一个bmap,overflow是uintptr而不是*bmap类型,保证bmap完全不含指针,是为了减少gc,溢出桶存储到extra字段中
}

tophash 就是用于实现快速定位 key 的位置,在实现过程中会使用 key 的 hash 值的高 8 位作为 tophash 值,存放在 bmap 的 tophash 字段中。

tophash 字段不仅存储 key 哈希值的高 8 位,还会存储一些状态值,用来表明当前桶单元状态,这些状态值都是小于 minTopHash 的。

为了避免 key 哈希值的高 8 位值和这些状态值相等,产生混淆情况,所以当 key 哈希值高 8 位若小于 minTopHash 时候,自动将其值加上 minTopHash 作为该 key 的 tophash。桶单元的状态值如下:

emptyRest      = 0 // 表明此桶单元为空,且更高索引的单元也是空
emptyOne       = 1 // 表明此桶单元为空
evacuatedX     = 2 // 用于表示扩容迁移到新桶前半段区间
evacuatedY     = 3 // 用于表示扩容迁移到新桶后半段区间
evacuatedEmpty = 4 // 用于表示此单元已迁移
minTopHash     = 5 // key的tophash值与桶状态值分割线值,小于此值的一定代表着桶单元的状态,大于此值的一定是key对应的tophash值func tophash(hash uintptr) uint8 {top := uint8(hash >> (goarch.PtrSize*8 - 8))if top < minTopHash {top += minTopHash}return top
}

mapextra 结构体

当 map 的 key 和 value 都不是指针类型时候,bmap 将完全不包含指针,那么 gc 时候就不用扫描 bmap。bmap 指向溢出桶的字段 overflow 是 uintptr 类型,为了防止这些 overflow 桶被 gc 掉,所以需要 mapextra.overflow 将它保存起来。如果 bmap 的 overflow 是 *bmap 类型,那么 gc 扫描的是一个个拉链表,效率明显不如直接扫描一段内存 (hmap.mapextra.overflow)。

type mapextra struct {overflow    *[]*bmap// overflow 包含的是 hmap.buckets 的 overflow 的 bucketsoldoverflow *[]*bma// oldoverflow 包含扩容时 hmap.oldbuckets 的 overflow 的 bucketnextOverflow *bmap // 指向空闲的 overflow bucket 的指针
}

总结

bmap(bucket)内存数据结构可视化如下:

注意到 key 和 value 是各自放在一起的,并不是 key/value/key/value/... 这样的形式,当 key 和 value 类型不一样的时候,key 和 value 占用字节大小不一样,使用 key/value 这种形式可能会因为内存对齐导致内存空间浪费,所以 Go 采用 key 和 value 分开存储的设计,更节省内存空间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3266294.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

升腾c92刷bios(一)

一、刷机bios 原机的bios是不允许设备通过usb接口进行系统更换&#xff0c;需要输入boot的正好和密码才可以&#xff0c;可惜的是我们并不知道原机的密码是什么。 步骤如下&#xff1a; 1、u盘进行格式化为fat32格式 2、将c92的bios程序进行备份和升级&#xff08;文章结尾提…

Mindspore框架循环神经网络RNN模型实现情感分类|(三)RNN模型构建

Mindspore框架循环神经网络RNN模型实现情感分类 Mindspore框架循环神经网络RNN模型实现情感分类|&#xff08;一&#xff09;IMDB影评数据集准备 Mindspore框架循环神经网络RNN模型实现情感分类|&#xff08;二&#xff09;预训练词向量 Mindspore框架循环神经网络RNN模型实现…

数据集成工具之kettle

Kettle 是一个用于数据集成的开源工具&#xff0c;由 Pentaho 开发&#xff0c;现已由 Hitachi Vantara 维护。Kettle 的全名是 Pentaho Data Integration (PDI)&#xff0c;主要用于数据提取、转换和加载&#xff08;ETL&#xff09;过程。 1. 核心组件 Spoon: 图形化的设计工…

Java | Leetcode Java题解之第283题移动零

题目&#xff1a; 题解&#xff1a; class Solution {public void moveZeroes(int[] nums) {int n nums.length, left 0, right 0;while (right < n) {if (nums[right] ! 0) {swap(nums, left, right);left;}right;}}public void swap(int[] nums, int left, int right)…

【Spring Boot教程:从入门到精通】掌握Spring Boot开发技巧与窍门(三)-配置git环境和项目创建

主要介绍了如何创建一个Springboot项目以及运行Springboot项目访问内部的html页面&#xff01;&#xff01;&#xff01; 文章目录 前言 配置git环境 创建项目 ​编辑 在SpringBoot中解决跨域问题 配置Vue 安装Nodejs 安装vue/cli 启动vue自带的图形化项目管理界面 总结 前言 …

k8s核心知识总结

写在前面 时间一下子到了7月份尾&#xff1b;整个7月份都乱糟糟的&#xff0c;不管怎么样&#xff0c;日子还是得过啊&#xff0c; 1、7月份核心了解个关于k8s&#xff0c;iceberg等相关技术&#xff0c;了解了相关的基础逻辑&#xff0c;虽然和数开主线有点偏&#xff0c;但是…

【b站-湖科大教书匠】5 运输层 - 计算机网络微课堂

课程地址&#xff1a;【计算机网络微课堂&#xff08;有字幕无背景音乐版&#xff09;】 https://www.bilibili.com/video/BV1c4411d7jb/?share_sourcecopy_web&vd_sourceb1cb921b73fe3808550eaf2224d1c155 目录 5 运输层 5.1 运输层概述 5.2 运输层端口号、复用与分用…

三维重建 概论

三维重建的方式 通俗来讲,三维重建就是将2D的数据生成3D的模型。 首先将2D的物体,通过各种方法,算法形成几何网格对象,同时用深度信息,处理远近,遮罩等关系,形成最终的3D模型。 在计算机视觉中,三维重建是指根据单视图或者多视图图像重建原始三维信息的过程。 单视图缺…

简单使用nginx

打开下载的nginx文件夹下的。。具体地址 打开并编辑nginx.conf文件 server {listen 8089;//访问端口号server_name localhost;//访问地址#charset koi8-r;#access_log logs/host.access.log main;location / {root D:/development/dist/;//dist包地址index index.h…

论文阅读:面向自动驾驶场景的多目标点云检测算法

论文地址:面向自动驾驶场景的多目标点云检测算法 概要 点云在自动驾驶系统中的三维目标检测是关键技术之一。目前主流的基于体素的无锚框检测算法通常采用复杂的二阶段修正模块,虽然在算法性能上有所提升,但往往伴随着较大的延迟。单阶段无锚框点云检测算法简化了检测流程,…

littlefs文件系统的移植和测试

简介 LittleFS 由ARM官方发布&#xff0c;ARM mbedOS的官方推荐文件系统&#xff0c;具有轻量级&#xff0c;掉电安全的特性。主要用在微控制器和flash上 掉电恢复&#xff0c;在写入时即使复位或者掉电也可以恢复到上一个正确的状态。 擦写均衡&#xff0c;有效延长flash的使…

基于JSP、java、Tomcat三者的项目实战--校园交易网(1)-项目搭建(前期准备工作)

这是项目的初始页面 接下来我先写下我的初始项目搭建 技术支持&#xff1a;JAVA、JSP 服务器&#xff1a;TOMCAT 7.0.86 编程软件&#xff1a;IntelliJ IDEA 2021.1.3 x64 首先我们打开页面&#xff0c;准备搭建项目的初始准备 1.New Project 2.随后点击Next&#xff0c;勾…

C++ | Leetcode C++题解之第287题寻找重复数

题目&#xff1a; 题解&#xff1a; class Solution { public:int findDuplicate(vector<int>& nums) {int slow 0, fast 0;do {slow nums[slow];fast nums[nums[fast]];} while (slow ! fast);slow 0;while (slow ! fast) {slow nums[slow];fast nums[fast]…

栈与递归

1.递归定义的数学函数 2.具有递归特性的数据结构 3.

vue3前端开发-小兔鲜项目-登录功能的业务接口调用

vue3前端开发-小兔鲜项目-登录功能的业务接口调用!这次&#xff0c;正式调用远程服务器的登录接口了。大家要必须使用测试账号密码&#xff0c;才能验证我们的代码。 测试账号密码是&#xff1a;账号&#xff08;xiaotuxian001&#xff09;&#xff1b;密码是&#xff08;1234…

Pytorch使用教学7-张量的广播

PyTorch中的张量具有和NumPy相同的广播特性&#xff0c;允许不同形状的张量之间进行计算。 广播的实质特性&#xff0c;其实是低维向量映射到高维之后&#xff0c;相同位置再进行相加。我们重点要学会的就是低维向量如何向高维向量进行映射。 相同形状的张量计算 虽然我们觉…

FreeRTOS操作系统(详细速通篇)——— 第六章

本专栏将对FreeRTOS进行快速讲解&#xff0c;带你了解并使用FreeRTOS的各部分内容。适用于快速了解FreeRTOS并进行开发、突击面试、对新手小白非常友好。期待您的后续关注和订阅&#xff01; 目录 系统中断管理 1 什么是中断&#xff1f; 1.1中断定义 1.2 中断执行机制 ​…

Chiplet SPI User Guide 详细解读

目录 一. 基本介绍 1.1.整体结构 1.2. 结构细节与功能描述 二. 输入输出接口 2.1. IO Ports for SPI Leader 2.2. IO Ports for SPI Follower 2.3. SPI Mode Configuration 2.4. Leader IP和Follower IP功能图 三. SPI Programming 3.1. Leader Register Descripti…

算法:数值算法

矩阵乘法 定义与性质 矩阵乘法是线性代数中的一个基本运算&#xff0c;它涉及到两个矩阵的点积运算。给定两个矩阵 A&#xff08;mn&#xff09;和 B&#xff08;np&#xff09;&#xff0c;它们的乘积 C&#xff08;mp&#xff09;定义为&#xff1a; 其中&#xff0c; Cij …

大连智点文化传媒有限公司介绍

在辽宁省大连市的文化传媒领域,大连智点文化传媒有限公司(以下简称“智点文化”)以其独特的魅力和专业的服务,逐渐崭露头角。作为一家集广告、文化、营销策划等多功能于一体的综合性文化传媒公司,智点文化不仅拥有深厚的行业底蕴,还不断探索与创新,以适应快速变化的市场需求。 …