ARM架构(二)—— arm v7/v8/v9寄存器介绍

1、ARM v7寄存器

1.1 通用寄存器

在这里插入图片描述
V7 V8开始 FIQ个IRQ优先级一样,
通用寄存器:31个

1.2 程序状态寄存器

CPSR是程序状态毒存器,保存条件标志位,中断禁止位,当前处理器模式等控制和状态位。每种异常模式下还存在SPSR,保存进入异常模式前的CPSR寄存器值,用于异常处理完成后恢复CPSR的状态。User和Sys不属于异常模式,没有CPSR寄存器,在User模式下,受限的CPSR存器称谓APSR(Application Program Status Register)。ARMV7-A中CPSR寄存器的信息如下图所示。
在这里插入图片描述

Field作用
NALU返回运算结果是否为负数
ZALU返回运算结果是否为0
CALU运算是否发生进位
VALU运算是否发生溢出
Qcumulative saturation
JARM是否处于 Jazelle 状态
E控制load/store字节序
Adisables asynchronous aborts,User模式不能操作
I使能/去使能IRQ,User模式不能操作
F使能/去使能FIQ,User模式不能操作
TARM和Thumb状态标志位
GE用于某些SIMD(Single Instruction, Multiple Data)指令
M[4:0]处理器模式:FIQ,IRQ,ABT,SVC,UND,MON,HYP。User模式不能操作

1.3 Coprocessor 15(CP15)寄存器

在ARM v7 上所有的系统寄存器都是按CP15寄存器操作,使用MRC 和MCR指令操作。【ARM V8和ARM V9之后可以直接操作系统寄存器,通过MRS指令操作。】
————————————————————————————————————————————————
MRC p15,0,r0,c1,c0,0; Read System Contril Register configuration data 读协处理器到通用寄存器
ORR r0,r0,#(1<<2) ;set C bit
ORR r0,r0,#(1<<12) ;set I bit
ORR r0,r0,#(1<<11) ;set Z bit
MCR p15 ,0, r0,c1,c0,0 ; Write System Contril Register configuration data 从通用寄存器写回到协处理器
————————————————————————————————————————————————
思考:
1.协处理器是做什么的?
它是Core中,专门用来操作系统寄存器的,所有系统寄存器通过co-processor操作的。
2.aarch64中有没有协处理器?
没有了,后面V8,V9架构之后直接对系统寄存器进行操作。

1.4 系统控制寄存器(cp15.sctlr)

系统控制寄存器SCTLR(System Control Register )用于控制内存,系统功能以及提供状态信息。

2 ARM v8 & ARMv9寄存器介绍

本节内容来自网上
这里介绍的都是AArch64的寄存器。
寄存器分类:
1.general purpose
2.PSTATE Special
3.Other(如sctlr)
4.ID
5.Memory
6.Cache,Address,TLB
7. pmu
8. Exception,Reset
9. Root
10.Secure
11.Virt
12.Timer
13.Thread
14.IMP DEF
15.Debug
16.Trace
17.CTI
18.Float
19.Legacy
20.RAS
21.MPAM
22.Pointer authentication
23.AMU
24.GIC,GICD,GICR,GICC,GICV.GICH,GITS

2.1 AArch64 general-purpose registers

AArch64执行状态提供了32个在任何时间任何特权级下都可访问的64位的通用寄存器每个寄存器都有64位宽,它们通常被称为寄存器X0-X30。
在这里插入图片描述
每个AArch64 64位通用寄存器(X0-X30)也具有32位(W0-W30)形式。
在这里插入图片描述
32位W寄存器取自相应的64位X寄存器的低32位。也就是说,W0映射到X0的低32位,W1映射到X1的低32位。
从W寄存器读取时,忽略相应X寄存器高32位,并保持其它不变。写入W寄存器时,将X寄存器的高32位设置为零。
eg:将0xFFFFFFFF写入W0会将X0设置为0x00000000FFFFFFFF。

2.2 AArch64 special registers

除了31个核心寄存器外,还有几个特殊的寄存器。
在这里插入图片描述
注意:没有被称为X31或W31的寄存器。许多指令被编码,例如:31代表零寄存器ZR(WZR/XZR)。还有一组受限制的指令,其中对一个或多个参数进行编码,使数字31表示堆栈指针(SP)。

当访问零寄存器时,所有写操作都被忽略,所有读操作返回0。请注意,64位形式的SP寄存器不使用X前缀。
在这里插入图片描述

在ARMv8体系结构中,当CPU运行在AArch64状态时,异常返回状态保存在每个异常级别的以下专用寄存器中:

  • Exception Link Register (ELR).
  • Saved Processor State Register (SPSR).
    每个异常级别都有一个专用的SP寄存器,但它不用于保存返回状态
    在这里插入图片描述

2.2.1 零寄存器

零寄存器当用作源寄存器时读操作的结果为零,当用作目标寄存器时则将结果丢弃。你可以在大多数指令中但不是所有指令中使用零寄存器。

2.2.2 栈指针

在ARMv8体系结构中,要使用的栈指针的选择在一定程度上与异常级别是分开的。默认情况下,发生异常时会选择目标异常级别的SPELn作为栈指针。例如,当触发到EL1的异常时,就会选择SP_EL1作为栈指针。每个异常级别都有自己的栈指针,SP_EL0、SP_EL1、SP EL2和SP _EL3。
当AArch64处于ELO以外的异常级别时,处理器可以使用:

  • 与该异常级别相关联的一个专用的64位栈指针(SP_ELn)
  • 与ELO关联的栈指针(SP_EL0)
    ELO永远只能访问SP ELO.

在这里插入图片描述
t后缀表示选择了SP_EL0栈指针。h后缀表示选择了SP_ELn栈指针。
虽然大多数指令都无法使用SP寄存器。但是有一些形式的算术指令可以操作SP。
eg:ADD指令可以读写当前的栈指针以调整函数中的栈指针。

ADD SP,SP, #x10 // Adjust sp to be x10 bytes before its current value

2.2.3 程序计数器

原来的ARMv7指令集的一个特性是R15作为程序计数器(PC),并作为一个通用寄存器使用。PC寄存器的使用带来了一些编程技巧,但它为编译器和复杂的流水线的设计引入了复杂性。在ARMv8中删除了对PC的直接访问,使返回预测更容易,并简化了ABI规范。
PC永远不能作为一个命名的寄存器来访问。但是,可以在某些指令中隐式的使用PC,如PC相对加载和地址生成。PC不能被指定为数据处理或加载指令的目的操作数。

2.2.4 异常链接寄存器(ELR)

异常链接寄存器保存异常返回地址。

2.2.5程序状态保存寄存器(SPSR)

当异常发生时,CPSR中的处理器状态将保存在相关的程序状态保存寄存器(SPSR)中,其方式类似于ARMV7。SPSR保存着异常发生之前的PSTATE的值,用于在异常返回时恢复PSTATE的值。
在这里插入图片描述
AArch64下各bit的含义:

bit含义
N负数标志位,如果结果为负数,则N=1;如果结果为非负数,则N=0。
Z零标志位,如果结果为零,Z=1,否则Z=0。
C进位标志位
V溢出标志位
SS软件步进标志位,表示当一个异常发生时,软件步进是否开启
IL非法执行状态位
D程序状态调试掩码,在异常发生时的异常级别下,来自监视点、断点和软件单步调试事件中的调试异常是否被屏蔽。
ASError(系统错误)掩码位
IIRQ掩码位!
FFIQ掩码位
M[4]异常发生时的执行状态,0表示AArch64
M[3:0]异常发生时的mode或异常级别

2.3 Processor State处理器状态

AArch64没有直接与ARMv7当前程序状态寄存器(CPSR)等价的寄存器。在AArch64中,传统CPSR的组件作为可以独立访问的字段提供。这些状态被统称为处理器状态(PSTATE)。
AArch64的处理器状态或PSTATE字段有以下定义:

bitDescription
NNegative condition flag
ZZero condition flag
CCarry condition flag
VoVerflow condition flag
DDebug mask bit.
ASError mask bit.
IIRO mask bit.
FFlO mask bit.
SSFlO mask bit.
ILIllegal execution state bit.
EL(2)Exception level.
nRWExecution state:0=64-bit 1 =32-bit
SPStack Pointer selector:0=SP ELO1=SP ELn

在AArch64中,你可以通过执行ERET指令从一个异常中返回,这将导致SPSRELn被复制到PSTATE中。这将恢复ALU标志、执行状态、异常级别和处理器分支。从这里开始,将继续从ELR ELn中的地址开始执行。
PSTATE.N,Z.C,V字段可以在EL0级别访问。 其他的字段可以在EL1或更高级别访问,但是这些字段在ELO级别未定义。

2.3.1 Processor State 使用示例

OperandPSTATEfieldsNotes
DAIFSetD,A,I,FDirectly sets any of the PSTATE.(D A L E} bits to 1
DAIFCIrD,A,I,FDirectly clears any of the PSTATE.(D, A, I, F} bits to 0
Switch to the runtime stack i.e. SP ELO 
ldr  x2,[sp,#CTX EL3STATE OFFSET + CTX RUNTIME SP] 
MoV  x20,sp
msr spsle , #MODE SP ELO
mov  sp,x2

2.4 系统寄存器

在AArch64中,系统配置通过系统寄存器进行控制,并使用MSR和MRS指令进行访问。这与ARMV7-A形成了鲜明对比,在ARMV7-A中,这些寄存器通常通过协处理器15(CP15)操作来访问。寄存器的名称会告诉你可以访问它的最低异常级别。

eg:

  • TTBRO EL1可以从EL1、EL2和EL3访问,
  • TTBRO EL2可以从EL2和EL3访问

可以采用以下形式来访问系统寄存器

MRS xO,TTBRO EL1//Move TTBRO EL1 into x8
MSR TTBRO EL1,x0// Move xe into TTBRO EL1

下表来自网上

ARM架构的之前版本使用协处理器来进行系统配置。 但是,AArch64不支持协处理器。

下表显示了异常级别,这些异常级别具有每个寄存器的单独副本。 例如,单独的辅助控制寄存器(ACTLR)以ACTLR_EL1,ACTLR_EL2和ACTLR_EL3的形式存在。

名称寄存器说明n的允许值
ACTLR_ELn辅助控制寄存器控制处理器特定的功能。1,2,3
CCSIDR_ELn当前缓存大小ID寄存器提供有关当前所选缓存的体系结构的信息。1
CLIDR_ELn缓存级别ID寄存器在每个级别上实现的单个或多个高速缓存的类型缓存层次结构的一致性级别和统一级别。1,2,3
CNTFRQ_ELn计数器频率寄存器报告系统计时器的频率。0
CNTPCT_ELn计数器物理计数寄存器保持64位的当前计数值。0
CNTKCTL_ELn计数器内核控制寄存器控制从虚拟计数器生成事件流。还控制从EL0访问物理计数器,虚拟计数器,EL1物理计时器和虚拟计时器。1
CNTP_CVAL_ELn计数器物理计时器比较值寄存器保存EL1物理计时器的比较值。0
CPACR_ELn协处理器访问控制寄存器控制对跟踪,浮点和SIMD功能的访问。1
CSSELR_ELn缓存大小选择寄存器通过指定所需的缓存级别和缓存类型(指令或数据缓存),选择当前的缓存大小ID寄存器CCSIDR_EL1。1
CNTP_CTL_ELn计数器物理控制寄存器控制EL1物理计时器的寄存器。0
CTR_ELn缓存类型寄存器有关集成缓存体系结构的信息。0
DCZID_ELn数据缓存零ID寄存器指示数据缓存零根据虚拟地址(DCZVA)系统指令写入字节值为0的块大小。0
ELR_ELn异常链接寄存器保存导致异常的指令的地址。1,2,3
ESR_ELn异常综合特征寄存器包括有关异常原因的信息。1,2,3
FAR_ELn故障地址寄存器保存虚拟错误地址。1,2,3
FPCR浮点控制寄存器控制浮点扩展行为。该寄存器中的字段映射到AArch32 FPSCR中的等效字段。 .
FPSR浮点状态寄存器提供浮点系统状态信息。该寄存器中的字段映射到AArch32 FPSCR中的等效字段。 .
HCR_ELnHypervisor 配置寄存器控制虚拟化设置,并将异常情况捕获到EL2。2
MAIR_ELn存储器属性间接寄存器在ELn的阶段1翻译的Long-descriptor格式转换表项中,提供对应于可能值的存储器属性编码。1,2,3
MIDR_ELn主ID寄存器代码运行的处理器类型(部件号和版本)。1
MPIDR_ELn多处理器密切关系的寄存器处理器和群集ID,在多核或群集系统中。1
RVBAR_ELn基于地址寄存器的重置向量保存重置向量的基地址,以便发送给ELn的任何异常。1,2,3
SCR_ELn安全配置寄存器控制安全状态和EL3的异常情况。3
SCTLR_ELn系统控制寄存器控制架构功能,例如MMU,缓存和对齐检查。0,1,2,3
SPSR_ELn保存的程序状态寄存器当发生异常时,保持已保存的处理器状态。abt,fiq,irq,und,1,2,3
TCR_ELn转换控制寄存器确定哪个转换表基地寄存器定义了转换表行走(translation table walk)的基地址,该基地址是ELn中,内存访问阶段1转换所需要的。还控制转换表格式并保存可缓存和可共享的信息。1,2,3
TPIDR_ELn用户读/写线程ID寄存器为了操作系统管理的目的,提供一个在ELn上执行的软件可以存储线程标识信息的位置。0,1,2,3
TPIDRRO_ELn用户只读线程ID寄存器提供在EL1或更高版本上执行的软件可以存储线程标识信息的位置。为了操作系统管理的目的,在EL0上执行的软件可以看到这些信息。0
TTBR0_ELn转换表基址寄存器0保存转换表0的基地址,以及它占用的内存的信息。这是ELn内,内存访问阶段1转换的转换表之一。1,2,3
TTBR1_ELn转换表基址寄存器1保存转换表1的基地址,以及它占据的存储器的信息。这是在EL0和EL1内,内存访问阶段1转换的转换表之一1
VBAR_ELn基于向量的地址寄存器保存异常基地址,以便发送到ELn的任何异常1,2,3
VTCR_ELn虚拟化转换控制寄存器控制来自非安全EL0和EL1的内存访问阶段2转换所需的转换表步行。还保存访问的可缓存和可共享信息。2
VTTBR_ELn虚拟化转换表基址寄存器保存来自非安全EL0和EL1的内存访问阶段2转换的转换表的基地址。2

2.5 其他寄存器(如sctlR)

系统控制寄存器(SCTLR)是一个用来控制标准内存、配置系统能力、提高处理器核状态信息的寄存器。
在这里插入图片描述
并不是所有bit在EL1都可用,各bit的含义如下:

  • UCI设置此位后,在AArch64中为DCCVAU、DCCIVAC、DCCVAC和ICIVAU指令启用ELO访问,
  • EE 异常字节顺序:0 小端;1大端
  • EOE ELO显式数据访问的字节序:0 小端;1 大端
  • WXN 写权限不可执行nTWE不陷入WFE,此标志为1表示WFE作为普通指令执行
  • nTWI不陷入WFI,此标志为1表示WFI作为普通指令执行
  • UCT 此标志为1时,开启AArch64的EL0下访问CTR_ELO存器
  • DNE ELO 下访问 DC AVA指令,0 禁止执行,1 允许执行
  • I开启指令缓存,这是在EL0和EL1下的指令缓存的启用位。对可缓存的正常内存的指令访问被缓存。
  • UMA 用户屏蔽访问。当EL0使用AArch64,控制从EL0的中断屏蔽访问。
  • SED 禁止SETEND。在ELO使用AArch32禁ISETEND指令。0 使能;1 禁止
  • ITD 禁止IT指令:0 IT指令有效; 1IT指令被当作16位指令。仅另外16位指令或32位指令的头16位可以使用,这依赖于实现
  • CP15BEN CP15 barrier使能。如果实现了,它是AArch32 CP15DMB,DSB和ISB barrier操作的使能位
  • SAO ELO的栈对齐检查使能位
  • SA栈对齐检查使能位
  • C数据cache使能。EL0和EL1的数据访问使能位。对cacheable普通内存的数据访问都被缓存
  • A 对齐检查使能位
  • M 使能MMU

为访问SCTLR ELn,使用:

MRS <Xt>,SCTLR ELn // Read SCTLR ELn into xt
MSR SCTLR ELn,<Xt>//write xt to SCTLR ELn

3. A64指令集介绍

1、ISA :Instruction System ArchitectureA

  • AArch64:指的是架构
  • A64:指的是指令集
  • arm64:指的是Linux Kernel中的aarch64体系

在这里插入图片描述

2、AArch64的指令集架构
在这里插入图片描述

3.1.指令集总结

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3250429.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Unity扩展SVN命令

可以直接在unity里右键文件提交和查看提交记录 顶部菜单栏上回退和更新整个unity工程 SvnForUnity.CS 记得要放在Editor文件夹下 using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.IO; using UnityEditor; using Unity…

互联网行业的产品方向(二)

数字与策略产品 大数据时代&#xff0c;数据的价值越来越重要。大多数公司开始对内外全部数据进行管理与挖掘&#xff0c;将业务数据化&#xff0c;数据资产化&#xff0c;资产业务化&#xff0c;将数据产品赋能业务&#xff0c;通过数据驱动公司业务发展&#xff0c;支撑公司战…

PyTorch使用细节

model.eval() &#xff1a;让BatchNorm、Dropout等失效&#xff1b; with torch.no_grad() &#xff1a; 不再缓存activation&#xff0c;节省显存&#xff1b; 这是矩阵乘法&#xff1a; y1 tensor tensor.T y2 tensor.matmul(tensor.T)y3 torch.rand_like(y1) torch.matm…

19_Shell练习题

19_Shell练习题 一、获取并打印空行行号 awk /^$/{print NR} test.txt二、求一列的和 awk -v sum0 { sum$2 } END{ print sum } test.txt三、检查文件是否存在 #!/bin/bashecho "请输入要查询文件的全路径名称&#xff1a;" read -p "例如&#xff1a;/temp…

(MLLMs)多模态大模型论文分享(1)

Multimodal Large Language Models: A Survey 摘要&#xff1a;多模态语言模型的探索集成了多种数据类型&#xff0c;如图像、文本、语言、音频和其他异构性。虽然最新的大型语言模型在基于文本的任务中表现出色&#xff0c;但它们往往难以理解和处理其他数据类型。多模态模型…

Volatility:分析MS10-061攻击

1、概述 # 1&#xff09;什么是 Volatility Volatility是开源的Windows&#xff0c;Linux&#xff0c;MaC&#xff0c;Android的内存取证分析工具。基于Python开发而成&#xff0c;可以分析内存中的各种数据。Volatility支持对32位或64位Wnidows、Linux、Mac、Android操作系统…

AI算不出9.11和9.9哪个大?六家大模型厂商总结了这些原因

大模型“答对”或“答错”其实是个概率问题。关于“9.11和9.9哪个大”&#xff0c;这样一道小学生难度的数学题难倒了一众海内外AI大模型。7月17日&#xff0c;第一财经报道了国内外“12个大模型8个都会答错”这道题的现象&#xff0c;大模型的数学能力引发讨论。 “从技术人员…

《系统架构设计师教程(第2版)》第12章-信息系统架构设计理论与实践-02-信息系统架构

文章目录 1. 概述1.1 信息系统架构&#xff08;ISA&#xff09;1.2 架构风格 2. 信息系统架构分类2.1 信息系统物理结构2.1.1 集中式结构2.1.2 分布式结构 2.2 信息系统的逻辑结构1&#xff09;横向综合2&#xff09;纵向综合3&#xff09;纵横综合 3. 信息系统架构的一般原理4…

C++从入门到起飞之——this指针 全方位剖析!

个人主页&#xff1a;秋风起&#xff0c;再归来~ C从入门到起飞 个人格言&#xff1a;悟已往之不谏&#xff0c;知来者犹可追 克心守己&#xff0c;律己则安&#xff01; 目录 1、this指针 2、C和C语⾔实现Stack对⽐ C实现Stack代码 C实现Stack代…

排序系列 之 快速排序

&#xff01;&#xff01;&#xff01;排序仅针对于数组哦本次排序是按照升序来的哦代码后边有图解哦 介绍 快速排序英文名为Quick Sort 基本思路 快速排序采用的是分治思想&#xff0c;即在一个无序的序列中选取一个任意的基准元素base&#xff0c;利用base将待排序的序列分…

Spring纯注解开发

前言 Spring3.0引入了纯注解开发的模式&#xff0c;框架的诞生是为了简化开发&#xff0c;那注解开发就是简化再简化。Spring的特性在整合MyBatis方面体现的淋漓尽致哦 一.注解开发 以前跟老韩学习SE时他就说&#xff1a;注解本质是一个继承了Annotation 的特殊接口,其具体实…

Unity免费领7月开发者周冰雪世界着色器环境包180种冰材质544种预制变体冰天雪地环境效果限时免费领取20240719

7月19号的Unity开发者周限时免费资产更新啦&#xff0c;这次是冰雪材质和环境素材包&#xff0c;质量挺不错。 之前进过捆绑包&#xff0c; 结帐时输入NATUREMANUFACTURE2024优惠券代码即可免费获得。无需购买。 Unity免费领7月开发者周冰雪世界着色器环境包180种冰材质544种…

DevExpress WinForms自动表单布局,创建高度可定制用户体验(一)

使用DevExpress WinForms的表单布局组件可以创建高度可定制的应用程序用户体验&#xff0c;从自动安排UI控件到按比例调整大小&#xff0c;DevExpress布局和数据布局控件都可以让您消除与基于像素表单设计相关的麻烦。 P.S&#xff1a;DevExpress WinForms拥有180组件和UI库&a…

系统架构设计师教程 第3章 信息系统基础知识-3.7 企业资源规划(ERP)-解读

系统架构设计师教程 第3章 信息系统基础知识-3.7 企业资源规划&#xff08;ERP&#xff09; 3.7.1 企业资源规划的概念3.7.2 企业资源规划的结构3.7.2.1 生产预测3.7.2.2 销售管理&#xff08;计划&#xff09;3.7.2.3 经营计划&#xff08;生产计划大纲&#xff09;3.7.2.4 …

【人工智能大模型】文心一言介绍以及基本使用指令

目录 一、产品背景与技术基础 二、主要功能与特点 基本用法 指令的使用 注意事项 文心一言&#xff08;ERNIE Bot&#xff09;是百度基于其文心大模型技术推出的生成式AI产品。以下是对文心一言的详细介绍&#xff1a; 一、产品背景与技术基础 技术背景&#xff1a;百度…

初学Linux之常见指令(上)

初学Linux之常见指令&#xff08;上&#xff09; 文章目录 初学Linux之常见指令&#xff08;上&#xff09;1. Linux下的小技巧热键man 指令 2. ls 指令3. pwd 指令4. cd 指令5. tree 指令6. touch 指令7. mkdir 指令8. rmdir 和 rm 指令9. cp 指令10. mv 指令 1. Linux下的小技…

PolarisMesh源码系列--Polaris-Go注册发现流程

导语 北极星是腾讯开源的一款服务治理平台&#xff0c;用来解决分布式和微服务架构中的服务管理、流量管理、配置管理、故障容错和可观测性问题。在分布式和微服务架构的治理领域&#xff0c;目前国内比较流行的还包括 Spring Cloud&#xff0c;Apache Dubbo 等。在 Kubernete…

英文名字网/英文取名/英语起名网源码/带文章系统带采集PHP网站程序

英文名字网/英文取名/英语起名网源码/带文章系统带采集PHP网站程序 演示站&#xff1a; https://enname.wengu8.com/ 程序截图&#xff1a; 程序说明&#xff1a; 1、前端模板PC手机端自适应。 2、全部数据带25W名字数据&#xff0c;后台可编辑&#xff0c;包括json格式的…

【Docker】Docker-compose 单机容器集群编排工具

目录 一.Docker-compose 概述 1.容器编排管理与传统的容器管理的区别 2.docker-compose 作用 3.docker-compose 本质 4.docker-compose 的三大概念 二.YML文件格式及编写注意事项 1.yml文件是什么 2.yml问价使用注意事项 3.yml文件的基本数据结构 三.Docker-compose …

零基础入门鸿蒙开发 HarmonyOS NEXT星河版开发学习

今天开始带大家零基础入门鸿蒙开发&#xff0c;也就是你没有任何编程基础的情况下就可以跟着石头哥零基础学习鸿蒙开发。 目录 一&#xff0c;为什么要学习鸿蒙 1-1&#xff0c;鸿蒙介绍 1-2&#xff0c;为什么要学习鸿蒙 1-3&#xff0c;鸿蒙各个版本介绍 1-4&#xff0…