如何学习Hadoop:糙快猛的大数据之路(利用GPT 学习)

稿定设计-2.png

目录

    • 引言
    • Hadoop是什么?
    • 学习Hadoop的"糙快猛"之道
      • 1. 不要追求完美,先动手再说
      • 2. 从简单的MapReduce开始
      • 3. 利用大模型加速学习
      • 4. 循序渐进,建立知识体系
    • 构建您的Hadoop技能树
      • 1. 夯实基础:Linux和Java
      • 2. 深入理解HDFS
      • 3. 掌握MapReduce编程模型
      • 4. 探索Hadoop生态系统
    • 实战项目:登录日志分析系统
    • 高级主题探索
      • 1. Hadoop性能优化
      • 2. 调试Hadoop作业
      • 3. 数据倾斜问题
      • 4. 与Spark的集成
    • 实战案例:构建数据湖
    • 持续学习和职业发展
    • 面对实际工作中的挑战
      • 1. 大规模数据迁移
      • 2. 处理实时流数据
      • 3. 处理非结构化数据
    • 新兴技术趋势
      • 1. 容器化和Kubernetes
      • 2. 机器学习集成
      • 3. 图处理
    • 将Hadoop技能与数据科学结合
    • 实战项目:构建端到端的大数据分析平台
    • 结语

引言

大家好,我是一名从0基础跨行到大数据开发的程序员。今天,我想和大家分享一下我学习Hadoop的心得,希望能够帮助到那些正在或即将踏上大数据之路的朋友们。

Hadoop是什么?

image.png

在开始之前,让我们先简单了解一下Hadoop。Hadoop是一个开源的分布式计算框架,主要用于处理和存储大规模数据集。它的核心组件包括:

  1. HDFS(Hadoop分布式文件系统):用于存储海量数据
  2. MapReduce:一种编程模型,用于大规模数据集的并行处理
  3. YARN:集群资源管理系统

学习Hadoop的"糙快猛"之道

image.png

1. 不要追求完美,先动手再说

记得我刚开始学习Hadoop时,面对繁多的概念和复杂的架构,我也曾感到迷茫。但我很快意识到,与其纠结于理论,不如直接上手实践。

就像我的座右铭:“学习就应该糙快猛,不要一下子追求完美,在不完美的状态下前行才是最高效的姿势。”

2. 从简单的MapReduce开始

让我们来看一个简单的WordCount示例,这是学习Hadoop的经典入门案例:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;
import java.util.StringTokenizer;public class WordCount {public static class TokenizerMapperextends Mapper<Object, Text, Text, IntWritable> {private final static IntWritable one = new IntWritable(1);private Text word = new Text();public void map(Object key, Text value, Context context) throws IOException, InterruptedException {StringTokenizer itr = new StringTokenizer(value.toString());while (itr.hasMoreTokens()) {word.set(itr.nextToken());context.write(word, one);}}}public static class IntSumReducerextends Reducer<Text, IntWritable, Text, IntWritable> {private IntWritable result = new IntWritable();public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable val : values) {sum += val.get();}result.set(sum);context.write(key, result);}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = Job.getInstance(conf, "word count");job.setJarByClass(WordCount.class);job.setMapperClass(TokenizerMapper.class);job.setCombinerClass(IntSumReducer.class);job.setReducerClass(IntSumReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);FileInputFormat.addInputPath(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));System.exit(job.waitForCompletion(true) ? 0 : 1);}
}

这段代码看起来可能有点复杂,但别被吓到!记住我们的口号:“糙快猛往前冲”。先把这段代码跑起来,看看结果,然后再逐步理解每个部分的作用。
image.png

3. 利用大模型加速学习

现在我们有了强大的AI助手,学习效率可以大大提高。但请记住,AI是工具,不是替代品。如我所说:“大模型能帮不少忙,但远没有到能完全代劳的时候,建立审美特别重要,还得自己来。”

比如,你可以让AI解释上面的WordCount代码,但真正的理解和应用还需要你自己动手实践。

4. 循序渐进,建立知识体系

学习Hadoop不是一蹴而就的事情。我的建议是:

  1. 先掌握HDFS的基本概念和操作
  2. 学习MapReduce编程模型
  3. 了解YARN的资源调度机制
  4. 探索Hadoop生态系统中的其他工具(如Hive, HBase等)

记住:“根据自己的节奏来”,不要盲目追求速度,找到适合自己的学习节奏才是关键。

image.png

构建您的Hadoop技能树

在上一部分中,我们讨论了开始学习Hadoop的基本策略和心态。现在,让我们更深入地探讨如何构建您的Hadoop技能,并在"糙快猛"的基础上更上一层楼。
image.png

1. 夯实基础:Linux和Java

在真正深入Hadoop之前,确保您对Linux操作系统和Java编程有扎实的基础。这两项技能对于理解和使用Hadoop至关重要。

  • Linux技能:学习基本的命令行操作,文件系统管理,以及Shell脚本编写。
  • Java编程:掌握面向对象编程,集合框架,并发编程等概念。

image.png

2. 深入理解HDFS

HDFS是Hadoop的基石。要真正理解它,可以尝试以下步骤:

  1. 搭建一个小型Hadoop集群(可以是单节点的伪分布式模式)
  2. 使用HDFS命令行工具进行文件操作
  3. 编写一个简单的Java程序,使用HDFS API进行文件读写

这里有一个使用HDFS API写文件的简单示例:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;import java.io.IOException;public class HDFSWriter {public static void main(String[] args) {Configuration conf = new Configuration();conf.set("fs.defaultFS", "hdfs://localhost:9000");try {FileSystem fs = FileSystem.get(conf);Path file = new Path("/user/hadoop/test.txt");if (fs.exists(file)) {fs.delete(file, true);}FSDataOutputStream outputStream = fs.create(file);outputStream.writeBytes("Hello, Hadoop!");outputStream.close();System.out.println("File written successfully");} catch (IOException e) {e.printStackTrace();}}
}

尝试运行这段代码,然后使用HDFS命令行工具查看文件内容,这样可以帮助你更好地理解HDFS的工作原理。

3. 掌握MapReduce编程模型

在理解了基本的WordCount示例后,尝试编写更复杂的MapReduce程序。例如:

  • 计算平均值
  • 数据去重
  • 数据关联(Join操作)

这里有一个计算平均值的MapReduce示例:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class AverageCalculator {public static class AverageMapperextends Mapper<LongWritable, Text, Text, DoubleWritable> {private Text outputKey = new Text("Average");public void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {double number = Double.parseDouble(value.toString());context.write(outputKey, new DoubleWritable(number));}}public static class AverageReducerextends Reducer<Text, DoubleWritable, Text, DoubleWritable> {public void reduce(Text key, Iterable<DoubleWritable> values, Context context)throws IOException, InterruptedException {double sum = 0;int count = 0;for (DoubleWritable value : values) {sum += value.get();count++;}double average = sum / count;context.write(key, new DoubleWritable(average));}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = Job.getInstance(conf, "average calculator");job.setJarByClass(AverageCalculator.class);job.setMapperClass(AverageMapper.class);job.setReducerClass(AverageReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(DoubleWritable.class);FileInputFormat.addInputPath(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));System.exit(job.waitForCompletion(true) ? 0 : 1);}
}

4. 探索Hadoop生态系统

image.png

Hadoop生态系统非常丰富,包括许多强大的工具。以下是一些值得学习的技术:

  1. Hive:用于数据仓库,提供类SQL查询语言
  2. HBase:基于Hadoop的NoSQL数据库
  3. Spark:用于大规模数据处理的统一分析引擎
  4. Kafka:分布式流处理平台

对于每种技术,我建议采用以下学习方法:

  1. 了解基本概念和使用场景
  2. 搭建本地环境
  3. 完成官方文档中的示例
  4. 尝试解决一个实际问题

记住我们的口号:“糙快猛往前冲”。不要在一个技术上停留太久,先建立整体认知,然后再逐步深入。

实战项目:登录日志分析系统

为了将所学知识融会贯通,不妨尝试一个实际项目。比如,我们可以建立一个简单的登录日志分析系统:

  1. 使用Flume收集登录日志
  2. 将日志存储到HDFS
  3. 使用MapReduce或Hive分析日志,如计算每日活跃用户数
  4. 将分析结果存入HBase
  5. 使用Web界面展示分析结果

image.png

这个项目会让你对Hadoop生态系统有一个全面的认识,也能培养你解决实际问题的能力。

高级主题探索

在掌握了Hadoop的基础知识后,是时候深入一些更高级的主题了。记住我们的"糙快猛"原则,但同时也要注意这些高级主题可能需要更多的时间和耐心。

1. Hadoop性能优化

image.png

优化Hadoop作业的性能是一项重要技能。以下是一些关键点:

a) 合理设置分片大小:分片大小会影响作业的并行度。

// 在Job配置中设置分片大小
job.getConfiguration().setLong("mapreduce.input.fileinputformat.split.minsize", 134217728); // 128MB

b) 使用Combiner:Combiner可以在Map端进行本地聚合,减少网络传输。

job.setCombinerClass(IntSumReducer.class);

c) 压缩中间结果:减少Map和Reduce之间的数据传输量。

// 启用map输出压缩
job.getConfiguration().setBoolean("mapreduce.map.output.compress", true);
job.getConfiguration().set("mapreduce.map.output.compress.codec", "org.apache.hadoop.io.compress.SnappyCodec");

2. 调试Hadoop作业

image.png

调试分布式系统中的问题可能很棘手。以下是一些有用的技巧:

a) 使用本地模式:在提交到集群之前,先在本地模式下运行和调试。

conf.set("mapreduce.framework.name", "local");

b) 查看作业日志:使用yarn logs命令查看详细日志。

yarn logs -applicationId <application_id>

c) 使用计数器:计数器可以帮助你了解作业的进度和状态。

context.getCounter("MyGroup", "MyCounter").increment(1);

3. 数据倾斜问题

image.png

数据倾斜是Hadoop中的一个常见问题。这里有几种解决方案:

a) 自定义分区器:确保数据均匀分布到Reduce任务。

public class CustomPartitioner extends Partitioner<Text, IntWritable> {@Overridepublic int getPartition(Text key, IntWritable value, int numPartitions) {// 自定义分区逻辑}
}// 在Job中设置
job.setPartitionerClass(CustomPartitioner.class);

b) 采样和预处理:对数据进行采样,识别并处理可能导致倾斜的键。

4. 与Spark的集成

随着Apache Spark的兴起,学会如何在Hadoop生态系统中使用Spark也变得很重要。

import org.apache.spark.sql.SparkSessionval spark = SparkSession.builder().appName("Spark on YARN").config("spark.yarn.jars", "hdfs:///spark-jars/*").getOrCreate()val df = spark.read.parquet("hdfs:///data/mydata.parquet")
df.createOrReplaceTempView("mydata")val result = spark.sql("SELECT * FROM mydata WHERE value > 100")
result.write.saveAsTable("highValueData")

实战案例:构建数据湖

让我们通过一个更复杂的实战案例来综合运用我们所学的知识。我们将构建一个简单的数据湖系统:

  1. 数据采集:使用Flume和Kafka采集各种来源的数据
  2. 数据存储:将原始数据存储在HDFS中
  3. 数据处理:使用MapReduce和Spark进行数据清洗和转换
  4. 数据分析:使用Hive进行数据分析
  5. 数据服务:使用HBase和Phoenix提供快速查询服务
  6. 任务调度:使用Oozie协调各个任务的执行

image.png

这里是一个使用Oozie调度Hive作业的工作流示例:

<workflow-app xmlns="uri:oozie:workflow:0.5" name="hive-wf"><start to="hive-job"/><action name="hive-job"><hive xmlns="uri:oozie:hive-action:0.2"><job-tracker>${jobTracker}</job-tracker><name-node>${nameNode}</name-node><script>my-hive-script.q</script></hive><ok to="end"/><error to="fail"/></action><kill name="fail"><message>Hive job failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message></kill><end name="end"/>
</workflow-app>

持续学习和职业发展

大数据领域发展迅速,持续学习至关重要。以下是一些建议:

  1. 关注Apache Hadoop的官方博客和邮件列表
  2. 参与开源社区:提交补丁,报告bug,或者回答他人的问题
  3. 参加大数据相关的会议:如Hadoop Summit, Strata + Hadoop World等
  4. 获取认证:如Cloudera Certified Developer for Apache Hadoop (CCDH)

image.png

面对实际工作中的挑战

在实际工作中,你可能会遇到一些课本上没有涉及的挑战。让我们探讨一些常见问题及其解决方案。

1. 大规模数据迁移

当需要在不同的Hadoop集群之间迁移大量数据时,可以考虑使用以下工具:

image.png

a) DistCp (分布式拷贝)

hadoop distcp hdfs://namenode1:8020/source hdfs://namenode2:8020/destination

b) Sqoop:用于在Hadoop和关系型数据库之间传输数据。

sqoop import --connect jdbc:mysql://localhost/mydb --table mytable --target-dir /user/hadoop/mytable

2. 处理实时流数据

image.png

对于需要实时处理的数据流,可以考虑以下技术:

a) Kafka Streams

StreamsBuilder builder = new StreamsBuilder();
KStream<String, String> source = builder.stream("input-topic");
KStream<String, String> processed = source.mapValues(value -> value.toUpperCase());
processed.to("output-topic");

b) Apache Flink

DataStream<String> dataStream = env.addSource(new FlinkKafkaConsumer<>("topic", new SimpleStringSchema(), properties));
DataStream<String> processedStream = dataStream.map(new MyMapFunction());
processedStream.addSink(new FlinkKafkaProducer<>("output-topic", new SimpleStringSchema(), properties));

3. 处理非结构化数据

image.png

对于图像、视频等非结构化数据,可以考虑以下方案:

a) 使用 HBase 存储元数据,HDFS 存储实际文件
b) 结合使用 Hadoop 和深度学习框架,如 TensorFlow on YARN

import tensorflow as tf
from tensorflow.python.client import device_libdef get_available_gpus():local_device_protos = device_lib.list_local_devices()return [x.name for x in local_device_protos if x.device_type == 'GPU']print(get_available_gpus())

新兴技术趋势

大数据领域发展迅速,掌握新兴技术可以让你在职场中保持竞争力。

1. 容器化和Kubernetes

使用 Kubernetes 管理 Hadoop 集群正变得越来越普遍。了解如何在 Kubernetes 上部署 Hadoop 集群是一项有价值的技能。

apiVersion: apps/v1
kind: Deployment
metadata:name: hadoop-namenode
spec:replicas: 1selector:matchLabels:app: hadoop-namenodetemplate:metadata:labels:app: hadoop-namenodespec:containers:- name: hadoop-namenodeimage: hadoop-namenode:latestports:- containerPort: 8020

2. 机器学习集成

将机器学习模型与Hadoop生态系统集成是一个重要趋势。例如,使用Spark MLlib:

import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.VectorAssembler// 准备训练数据
val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")// 特征工程
val assembler = new VectorAssembler().setInputCols(Array("feature1", "feature2", "feature3")).setOutputCol("features")val output = assembler.transform(data)// 训练逻辑回归模型
val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)val model = lr.fit(output)// 保存模型
model.write.overwrite().save("/models/logisticRegressionModel")

3. 图处理

随着社交网络分析等应用的兴起,图处理变得越来越重要。Apache Giraph 是 Hadoop 生态系统中的一个图处理框架:

public class SimpleShortestPathsComputation extendsBasicComputation<LongWritable, DoubleWritable, FloatWritable, DoubleWritable> {@Overridepublic void compute(Vertex<LongWritable, DoubleWritable, FloatWritable> vertex,Iterable<DoubleWritable> messages) throws IOException {if (getSuperstep() == 0) {vertex.setValue(new DoubleWritable(Double.MAX_VALUE));}double minDist = isSource(vertex) ? 0d : Double.MAX_VALUE;for (DoubleWritable message : messages) {minDist = Math.min(minDist, message.get());}if (minDist < vertex.getValue().get()) {vertex.setValue(new DoubleWritable(minDist));for (Edge<LongWritable, FloatWritable> edge : vertex.getEdges()) {double distance = minDist + edge.getValue().get();sendMessage(edge.getTargetVertexId(), new DoubleWritable(distance));}}vertex.voteToHalt();}
}

将Hadoop技能与数据科学结合

image.png

在当今的就业市场,能够将Hadoop技能与数据科学和机器学习结合的人才非常抢手。以下是一些建议:

  1. 学习 Python:Python 是数据科学的主要语言,也可以用于编写 Hadoop 作业。

  2. 掌握数据可视化:学习如何使用工具如 Matplotlib, Seaborn, 或 Plotly 来可视化大数据分析结果。

  3. 了解常见的机器学习算法:如线性回归、决策树、随机森林等,并学习如何在Hadoop/Spark环境中实现它们。

  4. 学习模型部署:了解如何将训练好的模型部署到生产环境中,以实现实时预测。

这里是一个使用PySpark进行简单线性回归的例子:

from pyspark.ml.regression import LinearRegression
from pyspark.ml.feature import VectorAssembler# 准备数据
data = spark.read.csv("hdfs:///data/regression_data.csv", header=True, inferSchema=True)# 特征工程
assembler = VectorAssembler(inputCols=["feature1", "feature2", "feature3"], outputCol="features")
data = assembler.transform(data)# 划分训练集和测试集
(trainingData, testData) = data.randomSplit([0.7, 0.3])# 创建线性回归模型
lr = LinearRegression(featuresCol="features", labelCol="label")# 训练模型
model = lr.fit(trainingData)# 在测试集上进行预测
predictions = model.transform(testData)# 评估模型
from pyspark.ml.evaluation import RegressionEvaluator
evaluator = RegressionEvaluator(labelCol="label", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(predictions)
print(f"Root Mean Squared Error (RMSE) on test data = {rmse}")

实战项目:构建端到端的大数据分析平台

image.png

为了将所有这些知识整合在一起,让我们设计一个更复杂的实战项目:构建一个端到端的大数据分析平台。这个平台将包括:

  1. 数据采集:使用Flume和Kafka收集来自不同源的数据
  2. 数据存储:使用HDFS和HBase存储原始数据
  3. 数据处理:使用Spark进行数据清洗和特征工程
  4. 机器学习:使用Spark MLlib训练预测模型
  5. 结果存储:将分析结果存储到HBase
  6. 数据可视化:使用Zeppelin或Superset创建交互式仪表板
  7. 工作流调度:使用Airflow管理整个数据处理pipeline

这个项目将让你有机会应用你所学的所有技能,并且培养你解决复杂大数据问题的能力。

结语

正如我一直强调的,“学习就应该糙快猛,不要一下子追求完美,在不完美的状态下前行才是最高效的姿势。”

image.png

但是,随着你在Hadoop和大数据领域的不断深入,你会发现,真正的专业性不仅体现在技术细节上,更体现在如何利用这些技术解决实际问题,如何推动创新。

请记住,技术工具在不断evolve,"糙快猛"的学习方法可以让你快速掌握新技术的要领。

每当你解决了一个难题,克服了一个障碍,你就离你的目标更近了一步。保持热情,保持好奇,继续前进!

最后,我想再次强调:

  1. 保持"糙快猛"的学习态度,快速掌握新技术
  2. 通过实战项目深化对技术的理解
  3. 培养将技术与实际问题结合的能力
  4. 持续关注行业动态,保持创新思维

大数据领域充满了挑战和机遇。但我相信,只要你保持学习的激情,不断挑战自己,你一定能在这个领域大展身手,成为真正的大数据专家和创新者!加油!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3250170.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

C语言 函数

1. 函数是什么&#xff1f; 数学中我们常见到函数的概念。维基百科中对函数的定义&#xff1a;子序程 在计算机科学中&#xff0c;子程序是一个大型程序中的某部分代码&#xff0c;有一个或者多个语句块组成。它负责完成某项特定任务&#xff0c;而且相较于其他代码&#xff…

机械学习—零基础学习日志(高数05——函数概念与特性)

零基础为了学人工智能&#xff0c;真的开始复习高数 本小节讲解隐函数&#xff0c;有点神奇&#xff0c;我竟然完全没有隐函数记忆了。 隐函数 隐函数&#xff0c;我个人通俗理解就是&#xff0c;在复杂的环境里&#xff0c;发现纯净天地。例如&#xff0c;在外太空的某个大陆…

【electron】 快速启动electron 应用

学无止境&#xff1a; 最近在搞electron项目&#xff0c;最重要的是总结 &#xff0c;写下来总不会忘记&#xff0c;也希望给大家参考一下&#xff0c;有不对的地方希望大家多指点。 快速启动electron 应用 1 克隆示例项目的仓库 git clone https://github.com/electron/ele…

Python批量Word转PDF神器,让你从此轻松转换文档!

大家好&#xff01;今天我们来聊聊工作中可能遇到的一个“头大”问题&#xff1a;如何批量将Word文档转成PDF&#xff1f;是不是光听听都感觉头皮发麻&#xff1f; 不用担心&#xff0c;今天我们就来分享一个Python小技巧&#xff0c;让你在批量转换文档时再也不用抓狂&#x…

实验06 持续集成测试

知识点 集成测试定义 集成测试是将多个单元组合起来形成更大的单元&#xff0c;并测试它们是否能协同工作形成子系统。一种旨在暴露单元接口之间、组件/系统间交互或协同工作时所存在的缺陷的测试。 集成测试关注的问题 模块间数据传递是否正确。一个模块的功能是否影响另一…

python如何调用matlab python package库matlab转python安装包调用使用简单示例

说明(废话) 之前没有进行python调用过matlab&#xff0c;前面用matlab engine for python可以通过调用matlab的源码文件的形式可以调用工程&#xff0c;但是这又有一个问题&#xff0c;就是在运行的时候必须提供python和matlab的全部源码 该文章是通过matlab源码转python pack…

uniapp form表单校验

公司的一个老项目&#xff0c;又要重新上架&#xff0c;uniapp一套代码&#xff0c;打包生成iOS端发布到App Store&#xff0c;安卓端发布到腾讯应用宝、OPPO、小米、华为、vivo&#xff0c;安卓各大应用市场上架要求不一样&#xff0c;可真麻烦啊 光一个表单校验&#xff0c;…

C++编程逻辑讲解step by step:使用对话框与控件(1)

对话框是实现人机交互的重要工具&#xff0c;Visual C的对话框类似于VB或Delphi的form&#xff0c;对话框和各种控件的结合使用&#xff0c;可以建立形形色色的功能十分强大的应用程序窗口界面&#xff0c;这就是所谓的对话框编程技术。 应用程序中需要各种各样的对话框&am…

易保全参与起草的两项区块链全国团体标准正式发布

在数字化转型浪潮席卷全球的今天&#xff0c;区块链技术以其去中心化、透明性、不可篡改等独特优势&#xff0c;正逐步成为重塑各行各业信任机制与业务流程的关键力量。 近日&#xff0c;中国通信工业协会正式发布了《区块链服务 基于区块链的去中心化标识符技术要求》与《区块…

IIS安装配置教程图文教程(超详细)

「作者简介」&#xff1a;冬奥会网络安全中国代表队&#xff0c;CSDN Top100&#xff0c;就职奇安信多年&#xff0c;以实战工作为基础对安全知识体系进行总结与归纳&#xff0c;著作适用于快速入门的 《网络安全自学教程》&#xff0c;内容涵盖系统安全、信息收集等12个知识域…

2024年中职大数据实验室建设及大数据实训平台整体解决方案

随着大数据时代的到来&#xff0c;中等职业学校&#xff08;中职&#xff09;的大数据实验室建设和实训平台打造成为了培养新一代信息技术人才的重要环节。本方案旨在为2024年中职大数据实验室建设提供一套全面、可行的整体解决方案&#xff0c;旨在培养学生的大数据分析能力、…

Postfix+Dovecot+Roundcube开源邮件系统搭建系列5:Roundcube安装配置(含Nginx+PHP部署配置)

1. PHP安装配置 参考wordpress 6.5.2版本安装记录 中关于PHP安装方法&#xff0c;此处不再详述。 修改php-fpm的启动用户和组为vmail&#xff0c;这一步是和nginx配置相呼应。配置文件/etc/opt/remi/php83/php-fpm.d/www.conf 下面几个配置&#xff1a; user vmail group vm…

【电路笔记】-放大器的输入和输出阻抗

放大器的输入和输出阻抗 文章目录 放大器的输入和输出阻抗1、概述2、输入和输出阻抗的定义3、阻抗的重要性4、阻抗设置5、设置方法6、总结1、概述 从非常简单的角度来看,放大器由一个“盒子”组成,实现输入信号和输出信号之间的放大功能。 输入进入系统和输出离开系统的方式…

数电基础 - 555定时器

目录 一. 简介 二. 工作原理 三. 应用场景 四. 结成施密特触发器 五. 结成单稳态触发器 六. 结成多携振荡器 七. 优缺点 一. 简介 555 定时器是一种集成电路芯片&#xff0c;在电子电路中应用广泛。 它包含两个比较器、一个基本 RS 触发器、一个放电三极管以及分压器等…

Leetcode二分搜索法浅析

文章目录 1.二分搜索法1.1什么是二分搜索法&#xff1f;1.2解法思路 1.二分搜索法 题目原文&#xff1a; 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target &#xff0c;写一个函数搜索 nums 中的 target&#xff0c;如果目标值存在返…

【BUG】已解决:raise KeyError(key) from err KeyError: (‘name‘, ‘age‘)

已解决&#xff1a;raise KeyError(key) from err KeyError: (‘name‘, ‘age‘) 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页&#xff0c;我是博主英杰&#xff0c;211科班出身&#xff0c;就职于医疗科技公司&#xff0c;热衷分享知识&#xf…

“社群+”生态下的开源AI智能名片源码:驱动商业与社会连接的新引擎

摘要&#xff1a;在“社群”生态日益成为主流趋势的今天&#xff0c;开源AI智能名片源码作为技术创新与社群运营的深度融合体&#xff0c;正逐步展现出其重塑商业格局、深化社会连接的巨大潜力。本文旨在深入探讨开源AI智能名片源码的技术特性、在“社群”生态中的具体应用、对…

VisualRules-Web案例展示(一)

VisualRules单机版以其卓越的功能深受用户喜爱。现在&#xff0c;我们进一步推出了VisualRules-Web在线版本&#xff0c;让您无需安装任何软件&#xff0c;即可在任何浏览器中轻松体验VisualRules的强大功能。无论是数据分析、规则管理还是自动化决策&#xff0c;VisualRules-W…

【D3.js in Action 3 精译_016】第二章 DOM 的操作方法

当前内容所在位置 第一部分 D3.js 基础知识 第一章 D3.js 简介&#xff08;已完结&#xff09; 1.1 何为 D3.js&#xff1f;1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践&#xff08;上&#xff09;1.3 数据可视化最佳实践&#xff08;下&#xff09;1.4 本章小结 第二章…

数据结构(Java):优先级队列(堆)堆的模拟实现

目录 1、优先级队列 1.1 概念 1.2 PriorityQueue底层结构 2、 堆 2.1 堆的概念 2.2 堆的存储结构 3、优先级队列&#xff08;堆&#xff09;的模拟实现 3.1 堆的创建 3.1.1 向下调整算法建完整堆 3.2 堆的插入 3.2.1 向上调整算法 3.3 堆的删除 3.4 堆排序 1、优先…