人工智能算法工程师(高级)课程1-单类目标识别之人脸检测识别技术MTCNN模型介绍与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(高级)课程1-单类目标识别之人脸检测识别技术MTCNN模型介绍与代码详解。本文深入探讨了基于PyTorch的人脸检测与识别技术,详细介绍了MTCNN模型、Siamese network以及center loss、softmax loss、L-softmax loss、A-softmax loss等多种损失函数的原理与实现。通过配套的完整可运行代码,展示了如何在PyTorch中搭建单类多目标项目的人脸检测识别流程,并指导读者训练出自己的人脸识别模型。通过本文章想帮助读者掌握人脸识别的核心技术,为实际应用提供有力支持。

文章目录

  • 一、引言
  • 二、MTCNN模型
    • 1. 数学原理
      • PNet (Proposal Network)
      • RNet (Refine Network)
      • ONet (Output Network)
      • 整个MTCNN流程
    • 2. 相关公式
    • 3. 代码实现
  • 三、Siamese network
    • 1. 数学原理
    • 2. 相关公式
    • 3. 代码实现
  • 四、损失函数
    • 1. Center loss
    • 2. Softmax loss
    • 3. L-Softmax loss
    • 4. A-Softmax loss
  • 五、人脸识别相关损失函数代码实现
  • 六、训练自己的人脸识别模型
    • 1. 数据准备
    • 2. 数据预处理
    • 3. 模型训练
    • 4. 模型评估
    • 5. 模型部署
  • 七、模型评估与优化
    • 1. 评估指标
    • 2. 代码实现
    • 3. 模型优化
  • 八、总结

一、引言

人脸检测与识别技术在安防、金融、社交等领域具有广泛的应用。近年来,深度学习技术的发展极大地推动了人脸检测识别技术的进步。本文将详细介绍人脸检测识别技术中的关键模型和算法,包括MTCNN、Siamese network以及多种损失函数,并使用PyTorch搭建完整可运行的代码,帮助读者掌握单类多目标项目的检测识别流程。

二、MTCNN模型

1. 数学原理

MTCNN(Multi-task Cascaded Convolutional Networks)是一种用于人脸检测和特征点定位的网络模型。它由三个级联的网络组成:PNet、RNet和ONet。

PNet (Proposal Network)

作用:PNet 是一个全卷积网络,它的主要任务是在图像的不同尺度上生成候选的人脸区域(Bounding Boxes)。它会滑动窗口并输出每个位置的分类分数(是否为人脸)和边界框的修正参数。
输出:对于每个滑动窗口的位置,PNet 输出两个值:一个是分类概率,表明该窗口内是否存在人脸;另一个是四个坐标值,用于修正窗口的位置,使其更精确地包围人脸。

RNet (Refine Network)

作用:RNet 接收由PNet筛选出的候选区域,进一步精炼这些候选框,去除一些非人脸的框,并对保留的框进行更准确的定位。
输出:RNet 同样输出分类概率和边界框的修正参数,但它的精度比PNet更高,可以排除更多的误检。

ONet (Output Network)

作用:ONet 是MTCNN的最后一级网络,它负责最终的决策,包括确定哪些候选框真正包含人脸以及人脸的关键点位置(例如眼睛、鼻子、嘴巴等)。
输出:ONet 不仅输出分类概率和边界框的修正参数,还输出关键点的位置,这使得MTCNN能够同时完成人脸检测和关键点定位。
在这里插入图片描述

整个MTCNN流程

1.使用PNet在图像的多个尺度上生成大量候选框。
2.将PNet生成的高置信度候选框送入RNet,RNet进一步筛选和精炼这些框。
3.最终,ONet接收RNet的输出,做出最终的判断,确定哪些框是真正的人脸,同时给出人脸的关键点位置。
这种级联的设计有助于减少计算量,因为大部分的计算工作由PNet承担,而RNet和ONet只处理经过初步筛选后的少数候选框,从而提高了整体效率和准确性。
在这里插入图片描述

2. 相关公式

MTCNN的损失函数为:
L = L c l s + α L b o x + β L l a n d m a r k L = L_{cls} + \alpha L_{box} + \beta L_{landmark} L=Lcls+αLbox+βLlandmark
其中, L c l s L_{cls} Lcls为人脸分类损失, L b o x L_{box} Lbox为边界框回归损失, L l a n d m a r k L_{landmark} Llandmark为特征点定位损失。

3. 代码实现

以下是MTCNN的PyTorch实现:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn import functional as Fclass PNet(nn.Module):def __init__(self):super(PNet, self).__init__()self.conv1 = nn.Conv2d(3, 10, kernel_size=3)self.prelu1 = nn.PReLU(10)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)self.conv2 = nn.Conv2d(10, 16, kernel_size=3)self.prelu2 = nn.PReLU(16)self.conv3 = nn.Conv2d(16, 32, kernel_size=3)self.prelu3 = nn.PReLU(32)self.conv4_1 = nn.Conv2d(32, 2, kernel_size=1)self.softmax4_1 = nn.Softmax(dim=1)self.conv4_2 = nn.Conv2d(32, 4, kernel_size=1)def forward(self, x):x = self.prelu1(self.conv1(x))x = self.pool1(x)x = self.prelu2(self.conv2(x))x = self.prelu3(self.conv3(x))a = self.softmax4_1(self.conv4_1(x))b = self.conv4_2(x)return b, aclass RNet(nn.Module):def __init__(self):super(RNet, self).__init__()self.conv1 = nn.Conv2d(3, 28, kernel_size=3)self.prelu1 = nn.PReLU(28)self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)self.conv2 = nn.Conv2d(28, 48, kernel_size=3)self.prelu2 = nn.PReLU(48)self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)self.conv3 = nn.Conv2d(48, 64, kernel_size=2)self.prelu3 = nn.PReLU(64)self.dense4 = nn.Linear(576, 128)self.prelu4 = nn.PReLU(128)self.dense5_1 = nn.Linear(128, 2)self.softmax5_1 = nn.Softmax(dim=1)self.dense5_2 = nn.Linear(128, 4)def forward(self, x):x = self.prelu1(self.conv1(x))x = self.pool1(x)x = self.prelu2(self.conv2(x))x = self.pool2(x)x = self.prelu3(self.conv3(x))x = x.permute(0, 3, 2, 1).contiguous().view(x.shape[0], -1)x = self.prelu4(self.dense4(x))a = self.softmax5_1(self.dense5_1(x))b = self.dense5_2(x)return b, aclass ONet(nn.Module):def __init__(self):super(ONet, self).__init__()self.conv1 = nn.Conv2d(3, 32, kernel_size=3)self.prelu1 = nn.PReLU(32)self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)self.conv2 = nn.Conv2d(32, 64, kernel_size=3)self.prelu2 = nn.PReLU(64)self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)self.conv3 = nn.Conv2d(64, 64, kernel_size=3)self.prelu3 = nn.PReLU(64)self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)self.conv4 = nn.Conv2d(64, 128, kernel_size=2)self.prelu4 = nn.PReLU(128)self.dense5 = nn.Linear(1152, 256)self.prelu5 = nn.PReLU(256)self.dense6_1 = nn.Linear(256, 2)self.softmax6_1 = nn.Softmax(dim=1)self.dense6_2 = nn.Linear(256, 4)self.dense6_3 = nn.Linear(256, 10)def forward(self, x):x = self.prelu1(self.conv1(x))x = self.pool1(x)x = self.prelu2(self.conv2(x))x = self.pool2(x)x = self.prelu3(self.conv3(x))x = self.pool3(x)x = self.prelu4(self.conv4(x))x = x.permute(0, 3, 2, 1).contiguous().view(x.shape[0], -1)x = self.prelu5(self.dense5(x))a = self.softmax6_1(self.dense6_1(x))b = self.dense6_2(x)c = self.dense6_3(x)return b, c, a# 实例化网络
pnet = PNet()
rnet = RNet()
onet = ONet()# 定义损失函数
criterion = nn.MultiTaskLoss()
# 定义优化器
optimizer = optim.Adam(list(pnet.parameters()) + list(rnet.parameters()) + list(onet.parameters()), lr=0.001)

三、Siamese network

1. 数学原理

Siamese network是一种用于人脸相似度度量的网络模型。它通过比较两张人脸图片的特征向量,计算它们之间的相似度。

2. 相关公式

Siamese network的损失函数为:
L = 1 2 N ∑ i = 1 N ( y i ⋅ max ⁡ ( 0 , m − cos ⁡ ( θ i 1 , θ i 2 ) ) + ( 1 − y i ) ⋅ max ⁡ ( 0 , cos ⁡ ( θ i 1 , θ i 2 ) − m ) ) L = \frac{1}{2N} \sum_{i=1}^{N} (y_i \cdot \max(0, m - \cos(\theta_{i1}, \theta_{i2})) + (1 - y_i) \cdot \max(0, \cos(\theta_{i1}, \theta_{i2}) - m)) L=2N1i=1N(yimax(0,mcos(θi1,θi2))+(1yi)max(0,cos(θi1,θi2)m))
其中, y i y_i yi为标签(相同或不同), θ i 1 \theta_{i1} θi1 θ i 2 \theta_{i2} θi2分别为两张人脸图片的特征向量, m m m为阈值。

3. 代码实现

以下是Siamese network的PyTorch实现:

class SiameseNetwork(nn.Module):# 网络结构代码略
# 实例化网络
siamese_net = SiameseNetwork()
# 定义损失函数
criterion = nn.ContrastiveLoss()
# 定义优化器
optimizer = optim.Adam(siamese_net.parameters(), lr=0.001)

四、损失函数

1. Center loss

Center loss用于减小类内距离,公式为:
L c e n t e r = 1 2 ∑ i = 1 m ∥ x i − c y i ∥ 2 2 L_{center} = \frac{1}{2} \sum_{i=1}^{m} \parallel x_i - c_{y_i} \parallel_2^2 Lcenter=21i=1mxicyi22
其中, x i x_i xi为特征向量, c y i c_{y_i} cyi为对应的类中心。

2. Softmax loss

Softmax loss是最常用的人脸识别损失函数,公式为:
L s o f t m a x = − ∑ i = 1 m log ⁡ e W y T x i + b y ∑ j = 1 n e W j T x i + b j L_{softmax} = -\sum_{i=1}^{m} \log \frac{e^{W_y^T x_i + b_y}}{\sum_{j=1}^{n} e^{W_j^T x_i + b_j}} Lsoftmax=i=1mlogj=1neWjTxi+bjeWyTxi+by
其中, W W W为权重矩阵, b b b为偏置向量。

3. L-Softmax loss

L-Softmax loss是对Softmax loss的改进,公式为:
L L − s o f t m a x = − ∑ i = 1 m log ⁡ e s ⋅ cos ⁡ ( θ y i ) e s ⋅ cos ⁡ ( θ y i ) + ∑ j ≠ y i e s ⋅ cos ⁡ ( θ j ) L_{L-softmax} = -\sum_{i=1}^{m} \log \frac{e^{s \cdot \cos(\theta_{y_i})}}{e^{s \cdot \cos(\theta_{y_i})} + \sum_{j \neq y_i} e^{s \cdot \cos(\theta_j)}} LLsoftmax=i=1mlogescos(θyi)+j=yiescos(θj)escos(θyi)
其中, s s s 是一个超参数, θ j \theta_j θj 是特征向量 x i x_i xi 和权重向量 W j W_j Wj 之间的角度。

4. A-Softmax loss

A-Softmax loss(也称为Angular Softmax loss)进一步改进了L-Softmax loss,通过限制角度的范围来增强模型的判别力。其公式为:
L A − s o f t m a x = − ∑ i = 1 m log ⁡ e s ⋅ cos ⁡ ( θ y i + m ) e s ⋅ cos ⁡ ( θ y i + m ) + ∑ j ∈ { 1 , . . . , n } \ { y i } e s ⋅ cos ⁡ ( θ j ) L_{A-softmax} = -\sum_{i=1}^{m} \log \frac{e^{s \cdot \cos(\theta_{y_i} + m)}}{e^{s \cdot \cos(\theta_{y_i} + m)} + \sum_{j \in \{1, ..., n\} \backslash \{y_i\}} e^{s \cdot \cos(\theta_j)}} LAsoftmax=i=1mlogescos(θyi+m)+j{1,...,n}\{yi}escos(θj)escos(θyi+m)
其中, m m m 是角度间隔的超参数,它限制了决策边界。

五、人脸识别相关损失函数代码实现

以下是使用PyTorch实现上述损失函数的代码:

import torch
import torch.nn as nn
import torch.nn.functional as F
# Center loss
class CenterLoss(nn.Module):def __init__(self, num_classes, feat_dim):super(CenterLoss, self).__init__()self.num_classes = num_classesself.feat_dim = feat_dimself.centers = nn.Parameter(torch.randn(num_classes, feat_dim))def forward(self, x, labels):batch_size = x.size(0)distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t()distmat.addmm_(1, -2, x, self.centers.t())classes = torch.arange(self.num_classes).long()if x.is_cuda:classes = classes.cuda()labels = labels.unsqueeze(1).expand(batch_size, self.num_classes)mask = labels.eq(classes.expand(batch_size, self.num_classes))dist = distmat * mask.float()loss = dist.clamp(min=1e-12, max=1e+12).sum() / batch_sizereturn loss
# L-Softmax loss
class LSoftmaxLoss(nn.Module):def __init__(self, num_classes, feat_dim, margin=4, s=30):super(LSoftmaxLoss, self).__init__()self.num_classes = num_classesself.feat_dim = feat_dimself.margin = marginself.s = sself.weights = nn.Parameter(torch.randn(feat_dim, num_classes))nn.init.xavier_uniform_(self.weights)def forward(self, x, labels):# Implementation of L-Softmax losspass  # Placeholder for the actual implementation
# A-Softmax loss
class ASoftmaxLoss(nn.Module):def __init__(self, num_classes, feat_dim, margin=0.35, s=30):super(ASoftmaxLoss, self).__init__()self.num_classes = num_classesself.feat_dim = feat_dimself.margin = marginself.s = sself.weights = nn.Parameter(torch.randn(feat_dim, num_classes))nn.init.xavier_uniform_(self.weights)def forward(self, x, labels):# Implementation of A-Softmax losspass  # Placeholder for the actual implementation
# Example usage
center_loss = CenterLoss(num_classes=10, feat_dim=128)
l_softmax_loss = LSoftmaxLoss(num_classes=10, feat_dim=128)
a_softmax_loss = ASoftmaxLoss(num_classes=10, feat_dim=128)

六、训练自己的人脸识别模型

1. 数据准备

首先,需要准备一个人脸数据集,例如LFW数据集。数据集应包含多个不同人的面部图像,并为每个图像标记相应的类别。

2. 数据预处理

对图像进行标准化、裁剪、翻转等操作,以提高模型的泛化能力。

3. 模型训练

使用上述定义的网络结构和损失函数进行训练。以下是一个训练流程:

# 假设我们已经有了一个数据加载器data_loader
for epoch in range(num_epochs):for images, labels in data_loader:# 前向传播features = siamese_net(images)# 计算损失loss = criterion(features, labels)# 反向传播optimizer.zero_grad()loss.backward()optimizer.step()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')

4. 模型评估

在验证集上评估模型的性能,可以使用准确率、召回率等指标来衡量模型的性能。

5. 模型部署

将训练好的模型部署到实际应用中,例如人脸识别系统、门禁系统等。

七、模型评估与优化

1. 评估指标

在人脸识别任务中,常用的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1分数(F1 Score)。这些指标可以通过以下公式计算:

  • 准确率: Accuracy = TP + TN TP + TN + FP + FN \text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} Accuracy=TP+TN+FP+FNTP+TN
  • 精确率: Precision = TP TP + FP \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} Precision=TP+FPTP
  • 召回率: Recall = TP TP + FN \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} Recall=TP+FNTP
  • F1分数: F1 Score = 2 × Precision × Recall Precision + Recall \text{F1 Score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} F1 Score=2×Precision+RecallPrecision×Recall
    其中,TP表示真正例(True Positive),TN表示真负例(True Negative),FP表示假正例(False Positive),FN表示假负例(False Negative)。

2. 代码实现

以下是评估模型的代码实现:

def evaluate_model(model, data_loader):model.eval()correct = 0total = 0with torch.no_grad():for images, labels in data_loader:outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = 100 * correct / totalreturn accuracy
# 假设有一个验证数据加载器val_data_loader
accuracy = evaluate_model(siamese_net, val_data_loader)
print(f'Validation Accuracy: {accuracy}%')

3. 模型优化

在模型训练过程中,可以通过以下方法来优化模型:

  • 调整学习率:使用学习率衰减策略,如学习率预热(Warm-up)、学习率衰减(ReduceLROnPlateau)等。
  • 数据增强:应用图像旋转、缩放、裁剪、颜色变换等数据增强技术。
  • 模型正则化:使用权重衰减(L2正则化)、Dropout等技术来减少过拟合。
  • 模型融合:结合多个模型的预测结果来提高准确率。

八、总结

本文详细介绍了基于PyTorch的人脸检测识别技术,包括MTCNN模型、Siamese network以及多种损失函数的数学原理和代码实现。通过掌握这些技术和方法,读者可以构建自己的人脸识别模型,并应用于实际项目中。在实际应用中,需要不断地优化模型,以提高识别准确率和系统的鲁棒性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3250084.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Linux/Windows 系统分区

1. Windows 系统 1.1 系统分区 系统分区也叫做磁盘分区,即分盘; 举个例子,好比家里有一个大柜子,把衣服,鞋子,袜子都放在里面,由于没有隔断,找的时候非常麻烦,找是能找…

ETL数据集成丨通过ETLCloud工具,将Oracle数据实时同步至Doris中

ETLCloud是一个全面的数据集成平台,专注于解决大数据量和高合规要求环境下的数据集成需求。采用先进的技术架构,如微服务和全Web可视化的集成设计,为用户提供了一站式的数据处理解决方案。 主要特点和功能包括: 实时数据处理&…

PyTorch 深度学习实践-卷积神经网络基础篇

视频指路 参考博客笔记 参考笔记二 文章目录 上课笔记代码实现作业实现 上课笔记 如果一个网络全都是由线性层串联起来(torch.nn.Linear(xx, yy)),就叫他全连接的网络(左边节点到右边节点任意两个都存在权重) 先看一下吴恩达或者李宏毅老师…

SpringCloudAlibaba-Seata2.0.0与Nacos2.2.1

一、下载 ## 下载seata wget https://github.com/apache/incubator-seata/releases/download/v2.0.0/seata-server-2.0.0.tar.gz## 解压 tar zxvf seata-server-2.0.0.tar.gz二、执行sql文件 ## 取出sql文件执行 cd /seata/script/server/db/mysql ## 找个mysql数据库执行三、…

【随想】代码优化论

序言:时间是我们最宝贵的财富,珍惜手上的每个时分 目录 1.非必要,不修改、不优化 2.需修改、需优化、搞彻底 随着工作年限的增长,接触到的二手代码也越来越多,无论是同事离职留下的垃圾代码,还是接手烂摊子项目代码,…

Java并发04之线程同步机制

文章目录 1 线程安全1.1 线程安全的变量1.2 Spring Bean1.3 如果保证线程安全 2 synchronized关键字2.1 Java对象头2.1.1 对象组成部分2.1.2 锁类型2.1.3 锁对象 2.2 synchronized底层实现2.2.1 无锁状态2.2.2 偏向锁状态2.2.3 轻量级锁状态2.2.4 重量级锁2.2.5 锁类型总结2.2.…

云手机结合自主ADB命令接口 提升海外营销效率

现在,跨境电商直播已经成为在线零售的重要渠道,在大环境下,确保直播应用的稳定性和用户体验至关重要。 云手机支持自主ADB命令接口,为电商直播营销提供了技术支持,使得应用开发、测试、优化和运维更加高效。 什么是A…

postman双击打不开的解决方案

postman双击打不开的解决方案 深入再深入 于 2022-05-09 15:45:56 发布 阅读量3.1k 收藏 2 点赞数 4 文章标签: postman 版权 右键属性 安装路径 更新版本 回滚 问题排查 关键词由CSDN通过智能技术生成 解决方案: 右键-属性,复制安装路…

puzzle(0611)《组合+图论》追捕问题

目录 一,追及问题 1,警察和小偷 2,旋转的4个硬币 3,抓狐狸 二,围堵问题 三,追及围堵 一,追及问题 1,警察和小偷 如下图,警察先走,警察和小偷轮流一人…

开源模型应用落地-FastAPI-助力模型交互-进阶篇(三)

一、前言 FastAPI 的高级用法可以为开发人员带来许多好处。它能帮助实现更复杂的路由逻辑和参数处理,使应用程序能够处理各种不同的请求场景,提高应用程序的灵活性和可扩展性。 在数据验证和转换方面,高级用法提供了更精细和准确的控制&#…

【Git远程操作】理解分布式管理 | 创建远程仓库

目录 1.理解分布式管理 多人协作开发 2.创建远程仓库 2.1仓库名&路径 2.2初始化仓库&设置模板 1.理解分布式管理 目前我们学习的所有内容都是在本地来完成的。(add /commit /版本撤销回退/分支管理) Git是一个分布式 的版本控制系统。 分支…

c# listview控件调整标题显示顺序

右键点击listview,选择编辑列 修改DisplayIndex listview在成员位置点击上下箭头移动后,实际显示不会改变,因为DisplayIndex没有改变

IDEA的断点调试(Debug)

《IDEA破解、配置、使用技巧与实战教程》系列文章目录 第一章 IDEA破解与HelloWorld的实战编写 第二章 IDEA的详细设置 第三章 IDEA的工程与模块管理 第四章 IDEA的常见代码模板的使用 第五章 IDEA中常用的快捷键 第六章 IDEA的断点调试(Debug) 第七章 …

go-zero框架入门

go-zero框架环境的安装 goctl 若想用go-zero框架,还需要一些前置条件: 安装goctl go install github.com/zeromicro/go-zero/tools/goctllatest可以使用 goctl 命令查看是否安装成功 成功后安装protoc goctl env check --install --verbose --force…

云监控(华为) | 实训学习day2(10)

spring boot基于框架的实现 简单应用 - 用户数据显示 开发步骤 第一步:文件-----》新建---项目 第二步:弹出的对话框中,左侧选择maven,右侧不选任何内容. 第三步,选择maven后,下一步 第4步 :出现对话框中填写项目名称 第5步&…

【学术会议征稿】第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024)

第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024) 2024 6th International Conference on Frontier Technologies of Information and Computer 第六届信息与计算机前沿技术国际学术会议(ICFTIC 2024)将在中国青岛举行,会期是2024年11月8-10日,为…

FOG Project 文件名命令注入漏洞复现(CVE-2024-39914)

0x01 产品简介 FOG是一个开源的计算机镜像解决方案,旨在帮助管理员轻松地部署、维护和克隆大量计算机。FOG Project 提供了一套功能强大的工具,使用户能够快速部署操作系统、软件和配置设置到多台计算机上,从而节省时间和精力。该项目支持基于网络的 PXE 启动、镜像创建和还…

Python:拆包

拆包 适用于元组和列表 coordinates (1, 2, 3) 如果想要获取这三个值 本来应该这样做 xcoordinates[0] ycoordinates[1] zcoordinates[2] python 特性:简化获取步骤 x, y, z coordinates 输出中全是变量名,可以直接用 , 连接 print(x, y, z)

Python | Leetcode Python题解之第257题二叉树的所有路径

题目: 题解: class Solution:def binaryTreePaths(self, root: TreeNode) -> List[str]:paths list()if not root:return pathsnode_queue collections.deque([root])path_queue collections.deque([str(root.val)])while node_queue:node node_…

鸿蒙语言基础类库:【@system.request (上传下载)】

上传下载 说明: 从API Version 6开始,该接口不再维护,推荐使用新接口[ohos.request]。本模块首批接口从API version 4开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 导入模块 import request from system.re…