人工智能算法工程师高级课程1-单类目标识别之人脸检测识别技术MTCNN模型介绍与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师高级课程1-单类目标识别之人脸检测识别技术MTCNN模型介绍与代码详解。本文深入探讨了基于PyTorch的人脸检测与识别技术,详细介绍了MTCNN模型、Siamese network以及center loss、softmax loss、L-softmax loss、A-softmax loss等多种损失函数的原理与实现。通过配套的完整可运行代码,展示了如何在PyTorch中搭建单类多目标项目的人脸检测识别流程,并指导读者训练出自己的人脸识别模型。通过本文章想帮助读者掌握人脸识别的核心技术,为实际应用提供有力支持。

文章目录

  • 一、引言
  • 二、MTCNN模型
    • 1. 数学原理
      • PNet (Proposal Network)
      • RNet (Refine Network)
      • ONet (Output Network)
      • 整个MTCNN流程
    • 2. 相关公式
    • 3. 代码实现
  • 三、Siamese network
    • 1. 数学原理
    • 2. 相关公式
    • 3. 代码实现
  • 四、损失函数
    • 1. Center loss
    • 2. Softmax loss
    • 3. L-Softmax loss
    • 4. A-Softmax loss
  • 五、人脸识别相关损失函数代码实现
  • 六、训练自己的人脸识别模型
    • 1. 数据准备
    • 2. 数据预处理
    • 3. 模型训练
    • 4. 模型评估
    • 5. 模型部署
  • 七、模型评估与优化
    • 1. 评估指标
    • 2. 代码实现
    • 3. 模型优化
  • 八、总结

一、引言

人脸检测与识别技术在安防、金融、社交等领域具有广泛的应用。近年来,深度学习技术的发展极大地推动了人脸检测识别技术的进步。本文将详细介绍人脸检测识别技术中的关键模型和算法,包括MTCNN、Siamese network以及多种损失函数,并使用PyTorch搭建完整可运行的代码,帮助读者掌握单类多目标项目的检测识别流程。

二、MTCNN模型

1. 数学原理

MTCNN(Multi-task Cascaded Convolutional Networks)是一种用于人脸检测和特征点定位的网络模型。它由三个级联的网络组成:PNet、RNet和ONet。

PNet (Proposal Network)

作用:PNet 是一个全卷积网络,它的主要任务是在图像的不同尺度上生成候选的人脸区域(Bounding Boxes)。它会滑动窗口并输出每个位置的分类分数(是否为人脸)和边界框的修正参数。
输出:对于每个滑动窗口的位置,PNet 输出两个值:一个是分类概率,表明该窗口内是否存在人脸;另一个是四个坐标值,用于修正窗口的位置,使其更精确地包围人脸。

RNet (Refine Network)

作用:RNet 接收由PNet筛选出的候选区域,进一步精炼这些候选框,去除一些非人脸的框,并对保留的框进行更准确的定位。
输出:RNet 同样输出分类概率和边界框的修正参数,但它的精度比PNet更高,可以排除更多的误检。

ONet (Output Network)

作用:ONet 是MTCNN的最后一级网络,它负责最终的决策,包括确定哪些候选框真正包含人脸以及人脸的关键点位置(例如眼睛、鼻子、嘴巴等)。
输出:ONet 不仅输出分类概率和边界框的修正参数,还输出关键点的位置,这使得MTCNN能够同时完成人脸检测和关键点定位。
在这里插入图片描述

整个MTCNN流程

1.使用PNet在图像的多个尺度上生成大量候选框。
2.将PNet生成的高置信度候选框送入RNet,RNet进一步筛选和精炼这些框。
3.最终,ONet接收RNet的输出,做出最终的判断,确定哪些框是真正的人脸,同时给出人脸的关键点位置。
这种级联的设计有助于减少计算量,因为大部分的计算工作由PNet承担,而RNet和ONet只处理经过初步筛选后的少数候选框,从而提高了整体效率和准确性。
在这里插入图片描述

2. 相关公式

MTCNN的损失函数为:
L = L c l s + α L b o x + β L l a n d m a r k L = L_{cls} + \alpha L_{box} + \beta L_{landmark} L=Lcls+αLbox+βLlandmark
其中, L c l s L_{cls} Lcls为人脸分类损失, L b o x L_{box} Lbox为边界框回归损失, L l a n d m a r k L_{landmark} Llandmark为特征点定位损失。

3. 代码实现

以下是MTCNN的PyTorch实现:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn import functional as Fclass PNet(nn.Module):def __init__(self):super(PNet, self).__init__()self.conv1 = nn.Conv2d(3, 10, kernel_size=3)self.prelu1 = nn.PReLU(10)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)self.conv2 = nn.Conv2d(10, 16, kernel_size=3)self.prelu2 = nn.PReLU(16)self.conv3 = nn.Conv2d(16, 32, kernel_size=3)self.prelu3 = nn.PReLU(32)self.conv4_1 = nn.Conv2d(32, 2, kernel_size=1)self.softmax4_1 = nn.Softmax(dim=1)self.conv4_2 = nn.Conv2d(32, 4, kernel_size=1)def forward(self, x):x = self.prelu1(self.conv1(x))x = self.pool1(x)x = self.prelu2(self.conv2(x))x = self.prelu3(self.conv3(x))a = self.softmax4_1(self.conv4_1(x))b = self.conv4_2(x)return b, aclass RNet(nn.Module):def __init__(self):super(RNet, self).__init__()self.conv1 = nn.Conv2d(3, 28, kernel_size=3)self.prelu1 = nn.PReLU(28)self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)self.conv2 = nn.Conv2d(28, 48, kernel_size=3)self.prelu2 = nn.PReLU(48)self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)self.conv3 = nn.Conv2d(48, 64, kernel_size=2)self.prelu3 = nn.PReLU(64)self.dense4 = nn.Linear(576, 128)self.prelu4 = nn.PReLU(128)self.dense5_1 = nn.Linear(128, 2)self.softmax5_1 = nn.Softmax(dim=1)self.dense5_2 = nn.Linear(128, 4)def forward(self, x):x = self.prelu1(self.conv1(x))x = self.pool1(x)x = self.prelu2(self.conv2(x))x = self.pool2(x)x = self.prelu3(self.conv3(x))x = x.permute(0, 3, 2, 1).contiguous().view(x.shape[0], -1)x = self.prelu4(self.dense4(x))a = self.softmax5_1(self.dense5_1(x))b = self.dense5_2(x)return b, aclass ONet(nn.Module):def __init__(self):super(ONet, self).__init__()self.conv1 = nn.Conv2d(3, 32, kernel_size=3)self.prelu1 = nn.PReLU(32)self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)self.conv2 = nn.Conv2d(32, 64, kernel_size=3)self.prelu2 = nn.PReLU(64)self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)self.conv3 = nn.Conv2d(64, 64, kernel_size=3)self.prelu3 = nn.PReLU(64)self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)self.conv4 = nn.Conv2d(64, 128, kernel_size=2)self.prelu4 = nn.PReLU(128)self.dense5 = nn.Linear(1152, 256)self.prelu5 = nn.PReLU(256)self.dense6_1 = nn.Linear(256, 2)self.softmax6_1 = nn.Softmax(dim=1)self.dense6_2 = nn.Linear(256, 4)self.dense6_3 = nn.Linear(256, 10)def forward(self, x):x = self.prelu1(self.conv1(x))x = self.pool1(x)x = self.prelu2(self.conv2(x))x = self.pool2(x)x = self.prelu3(self.conv3(x))x = self.pool3(x)x = self.prelu4(self.conv4(x))x = x.permute(0, 3, 2, 1).contiguous().view(x.shape[0], -1)x = self.prelu5(self.dense5(x))a = self.softmax6_1(self.dense6_1(x))b = self.dense6_2(x)c = self.dense6_3(x)return b, c, a# 实例化网络
pnet = PNet()
rnet = RNet()
onet = ONet()# 定义损失函数
criterion = nn.MultiTaskLoss()
# 定义优化器
optimizer = optim.Adam(list(pnet.parameters()) + list(rnet.parameters()) + list(onet.parameters()), lr=0.001)

三、Siamese network

1. 数学原理

Siamese network是一种用于人脸相似度度量的网络模型。它通过比较两张人脸图片的特征向量,计算它们之间的相似度。

2. 相关公式

Siamese network的损失函数为:
L = 1 2 N ∑ i = 1 N ( y i ⋅ max ⁡ ( 0 , m − cos ⁡ ( θ i 1 , θ i 2 ) ) + ( 1 − y i ) ⋅ max ⁡ ( 0 , cos ⁡ ( θ i 1 , θ i 2 ) − m ) ) L = \frac{1}{2N} \sum_{i=1}^{N} (y_i \cdot \max(0, m - \cos(\theta_{i1}, \theta_{i2})) + (1 - y_i) \cdot \max(0, \cos(\theta_{i1}, \theta_{i2}) - m)) L=2N1i=1N(yimax(0,mcos(θi1,θi2))+(1yi)max(0,cos(θi1,θi2)m))
其中, y i y_i yi为标签(相同或不同), θ i 1 \theta_{i1} θi1 θ i 2 \theta_{i2} θi2分别为两张人脸图片的特征向量, m m m为阈值。

3. 代码实现

以下是Siamese network的PyTorch实现:

class SiameseNetwork(nn.Module):# 网络结构代码略
# 实例化网络
siamese_net = SiameseNetwork()
# 定义损失函数
criterion = nn.ContrastiveLoss()
# 定义优化器
optimizer = optim.Adam(siamese_net.parameters(), lr=0.001)

四、损失函数

1. Center loss

Center loss用于减小类内距离,公式为:
L c e n t e r = 1 2 ∑ i = 1 m ∥ x i − c y i ∥ 2 2 L_{center} = \frac{1}{2} \sum_{i=1}^{m} \parallel x_i - c_{y_i} \parallel_2^2 Lcenter=21i=1mxicyi22
其中, x i x_i xi为特征向量, c y i c_{y_i} cyi为对应的类中心。

2. Softmax loss

Softmax loss是最常用的人脸识别损失函数,公式为:
L s o f t m a x = − ∑ i = 1 m log ⁡ e W y T x i + b y ∑ j = 1 n e W j T x i + b j L_{softmax} = -\sum_{i=1}^{m} \log \frac{e^{W_y^T x_i + b_y}}{\sum_{j=1}^{n} e^{W_j^T x_i + b_j}} Lsoftmax=i=1mlogj=1neWjTxi+bjeWyTxi+by
其中, W W W为权重矩阵, b b b为偏置向量。

3. L-Softmax loss

L-Softmax loss是对Softmax loss的改进,公式为:
L L − s o f t m a x = − ∑ i = 1 m log ⁡ e s ⋅ cos ⁡ ( θ y i ) e s ⋅ cos ⁡ ( θ y i ) + ∑ j ≠ y i e s ⋅ cos ⁡ ( θ j ) L_{L-softmax} = -\sum_{i=1}^{m} \log \frac{e^{s \cdot \cos(\theta_{y_i})}}{e^{s \cdot \cos(\theta_{y_i})} + \sum_{j \neq y_i} e^{s \cdot \cos(\theta_j)}} LLsoftmax=i=1mlogescos(θyi)+j=yiescos(θj)escos(θyi)
其中, s s s 是一个超参数, θ j \theta_j θj 是特征向量 x i x_i xi 和权重向量 W j W_j Wj 之间的角度。

4. A-Softmax loss

A-Softmax loss(也称为Angular Softmax loss)进一步改进了L-Softmax loss,通过限制角度的范围来增强模型的判别力。其公式为:
L A − s o f t m a x = − ∑ i = 1 m log ⁡ e s ⋅ cos ⁡ ( θ y i + m ) e s ⋅ cos ⁡ ( θ y i + m ) + ∑ j ∈ { 1 , . . . , n } \ { y i } e s ⋅ cos ⁡ ( θ j ) L_{A-softmax} = -\sum_{i=1}^{m} \log \frac{e^{s \cdot \cos(\theta_{y_i} + m)}}{e^{s \cdot \cos(\theta_{y_i} + m)} + \sum_{j \in \{1, ..., n\} \backslash \{y_i\}} e^{s \cdot \cos(\theta_j)}} LAsoftmax=i=1mlogescos(θyi+m)+j{1,...,n}\{yi}escos(θj)escos(θyi+m)
其中, m m m 是角度间隔的超参数,它限制了决策边界。

五、人脸识别相关损失函数代码实现

以下是使用PyTorch实现上述损失函数的代码:

import torch
import torch.nn as nn
import torch.nn.functional as F
# Center loss
class CenterLoss(nn.Module):def __init__(self, num_classes, feat_dim):super(CenterLoss, self).__init__()self.num_classes = num_classesself.feat_dim = feat_dimself.centers = nn.Parameter(torch.randn(num_classes, feat_dim))def forward(self, x, labels):batch_size = x.size(0)distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t()distmat.addmm_(1, -2, x, self.centers.t())classes = torch.arange(self.num_classes).long()if x.is_cuda:classes = classes.cuda()labels = labels.unsqueeze(1).expand(batch_size, self.num_classes)mask = labels.eq(classes.expand(batch_size, self.num_classes))dist = distmat * mask.float()loss = dist.clamp(min=1e-12, max=1e+12).sum() / batch_sizereturn loss
# L-Softmax loss
class LSoftmaxLoss(nn.Module):def __init__(self, num_classes, feat_dim, margin=4, s=30):super(LSoftmaxLoss, self).__init__()self.num_classes = num_classesself.feat_dim = feat_dimself.margin = marginself.s = sself.weights = nn.Parameter(torch.randn(feat_dim, num_classes))nn.init.xavier_uniform_(self.weights)def forward(self, x, labels):# Implementation of L-Softmax losspass  # Placeholder for the actual implementation
# A-Softmax loss
class ASoftmaxLoss(nn.Module):def __init__(self, num_classes, feat_dim, margin=0.35, s=30):super(ASoftmaxLoss, self).__init__()self.num_classes = num_classesself.feat_dim = feat_dimself.margin = marginself.s = sself.weights = nn.Parameter(torch.randn(feat_dim, num_classes))nn.init.xavier_uniform_(self.weights)def forward(self, x, labels):# Implementation of A-Softmax losspass  # Placeholder for the actual implementation
# Example usage
center_loss = CenterLoss(num_classes=10, feat_dim=128)
l_softmax_loss = LSoftmaxLoss(num_classes=10, feat_dim=128)
a_softmax_loss = ASoftmaxLoss(num_classes=10, feat_dim=128)

六、训练自己的人脸识别模型

1. 数据准备

首先,需要准备一个人脸数据集,例如LFW数据集。数据集应包含多个不同人的面部图像,并为每个图像标记相应的类别。

2. 数据预处理

对图像进行标准化、裁剪、翻转等操作,以提高模型的泛化能力。

3. 模型训练

使用上述定义的网络结构和损失函数进行训练。以下是一个训练流程:

# 假设我们已经有了一个数据加载器data_loader
for epoch in range(num_epochs):for images, labels in data_loader:# 前向传播features = siamese_net(images)# 计算损失loss = criterion(features, labels)# 反向传播optimizer.zero_grad()loss.backward()optimizer.step()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')

4. 模型评估

在验证集上评估模型的性能,可以使用准确率、召回率等指标来衡量模型的性能。

5. 模型部署

将训练好的模型部署到实际应用中,例如人脸识别系统、门禁系统等。

七、模型评估与优化

1. 评估指标

在人脸识别任务中,常用的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1分数(F1 Score)。这些指标可以通过以下公式计算:

  • 准确率: Accuracy = TP + TN TP + TN + FP + FN \text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} Accuracy=TP+TN+FP+FNTP+TN
  • 精确率: Precision = TP TP + FP \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} Precision=TP+FPTP
  • 召回率: Recall = TP TP + FN \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} Recall=TP+FNTP
  • F1分数: F1 Score = 2 × Precision × Recall Precision + Recall \text{F1 Score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} F1 Score=2×Precision+RecallPrecision×Recall
    其中,TP表示真正例(True Positive),TN表示真负例(True Negative),FP表示假正例(False Positive),FN表示假负例(False Negative)。

2. 代码实现

以下是评估模型的代码实现:

def evaluate_model(model, data_loader):model.eval()correct = 0total = 0with torch.no_grad():for images, labels in data_loader:outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = 100 * correct / totalreturn accuracy
# 假设有一个验证数据加载器val_data_loader
accuracy = evaluate_model(siamese_net, val_data_loader)
print(f'Validation Accuracy: {accuracy}%')

3. 模型优化

在模型训练过程中,可以通过以下方法来优化模型:

  • 调整学习率:使用学习率衰减策略,如学习率预热(Warm-up)、学习率衰减(ReduceLROnPlateau)等。
  • 数据增强:应用图像旋转、缩放、裁剪、颜色变换等数据增强技术。
  • 模型正则化:使用权重衰减(L2正则化)、Dropout等技术来减少过拟合。
  • 模型融合:结合多个模型的预测结果来提高准确率。

八、总结

本文详细介绍了基于PyTorch的人脸检测识别技术,包括MTCNN模型、Siamese network以及多种损失函数的数学原理和代码实现。通过掌握这些技术和方法,读者可以构建自己的人脸识别模型,并应用于实际项目中。在实际应用中,需要不断地优化模型,以提高识别准确率和系统的鲁棒性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3249777.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【操作系统】文件管理——文件共享与保护,文件系统的结构(个人笔记)

学习日期:2024.7.18 内容摘要:文件共享,文件保护,文件系统的层级结构和全局结构,虚拟文件系统 文件共享 操作系统提供的文件共享功能,可以让多个用户共享使用同一个文件。文件共享和文件复制是不一样的&a…

mac docker no space left on device

mac 上 docker 拉取镜像报错 Error response from daemon: write /var/lib/docker/tmp/docker-export-3995807640/b8464f52498789c4ebbc063d508f04e8d2586567fbffa475e3cd9afd3c5a7cf2/layer.tar: no space left on device解决: 增加 docker 虚拟磁盘大小。如下图

分(中)位数回归算法 -医学小样本数据回归分析的更佳选择 ?

分(中)位数回归算法 -医学小样本数据回归分析的更佳选择 ? 在医学研究中,小样本数据回归分析是一项常见且重要的任务。由于医学数据的复杂性、多样性和稀缺性,传统的回归分析方法如最小二乘法(OLS&#xf…

LeetCode 3112.访问消失节点的最少时间:单源最短路的Dijkstra算法

【LetMeFly】3112.访问消失节点的最少时间:单源最短路的Dijkstra算法 力扣题目链接:https://leetcode.cn/problems/minimum-time-to-visit-disappearing-nodes/ 给你一个二维数组 edges 表示一个 n 个点的无向图,其中 edges[i] [ui, vi, l…

大数据之数据抽取架构演变过程

架构演变之Flink架构的演变过程 一、 起初搭建整个大数据平台是基于CDH这一套资源管理和整合的CM资源管理器搭建的 整个平台包括了: HDFS,YARN,HIVE,zoozie,FLINK,Spark,Zookeeper等组件搭建而成, 刚开始搭建的时候&am…

Quartus II 13.1添加新的FPGA器件库

最近需要用到Altera的一款MAX II 系列EPM240的FPGA芯片,所以需要给我的Quartus II 13.1添加新的器件库,在此记录一下过程。 1 下载所需的期间库 进入Inter官网,(Altera已经被Inter收购)https://www.intel.cn/content…

人工智能导论-机器学习

机器学习概述 概述 本章主要介绍的机器学习的概念、发展历程、发展趋势、相关应用,着重拓展机监督学习和无监督学习的相关知识。 重点:机器学习的定义和应用; 难点:机器学习算法及分类。 机器学习 - 重要性 MachineLeaning出…

基于X86+FPGA+AI数字化医疗设备:全自动尿沉渣检测仪

助力数字医疗发展,信迈可提供全自动尿沉渣检测仪专用计算机 随着信息技术的不断进步,医疗也进入了一个全新的数字化时代。首先是医疗设备的数字化,大大丰富了医疗信息的内涵和容量,具有广阔的市场发展前景。 数字化医疗设备&…

[开源]语雀+Vercel:打造免费个人博客网站

大家好,我是白露。 今天我想和大家分享我的今年的第一个开源项目 —— 基于语雀+Nextjs+Vercel实现免费的博客系统。 简单来说,你在语雀写博客,然后直接一键同步到个人网站上,网站自动部署! 而且,整个过程几乎不需要额外的成本,也不用充值语雀超级会员,hh。这个项目…

IAR嵌入式开发解决方案已全面支持芯科集成CX3288系列车规RISC-V MCU,共同推动汽车高品质应用的安全开发

中国上海,2024年7月16日 — 全球领先的嵌入式系统开发软件解决方案供应商IAR与芯科集成电路(以下简称“芯科集成”)联合宣布,最新版本IAR Embedded Workbench for RISC-V 3.30.2功能安全版已全面支持芯科集成CX3288系列车规RISC-V…

分布式服务框架zookeeper+消息队列kafaka

一、zookeeper概述 zookeeper是一个分布式服务框架,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,如:命名服务,状态同步,配置中心,集群管理等。 在分布式环境下,经常需要对应用/服…

秋招突击——7/18——多线程编程(Java线程池和Executor框架的)

文章目录 引言基础知识线程池原理Executor框架Executor框架的两级调度模型Executor框架结构Executor框架成员ThreadPoolExecutor详解——这里简单过一下,知道原理即可FixedThreadPool简介SingleThreadExecutorCachedThreadPool ScheduledThreadPoolExecutor详解——…

【Docker】基于Docker-compose创建LNMP环境

目录 一.Docker-compose 概述 1.容器编排管理与传统的容器管理的区别 2.docker-compose 作用 3.docker-compose 本质 4.docker-compose 的三大概念 二.YML文件格式及编写注意事项 1.yml文件是什么 2.yml问价使用注意事项 3.yml文件的基本数据结构 三.Docker-compose …

Redis常用的5大数据类型

Reids字符串&#xff08;String&#xff09; 设置相同的key&#xff0c;之前内容会覆盖掉 Redis列表&#xff08;List&#xff09; 常用命令 从左往右放值 数据结构 Redis集合&#xff08;set&#xff09; sadd<key><value1><value2>...... 数据结构 Set数据…

2024可信数据库发展大会|存算分离架构驱动电信数据平台革新

7 月 16 日 - 17 日&#xff0c;由中国通信标准化协会和中国信息通信研究院主办&#xff0c;大数据技术标准推进委员会承办&#xff0c;InfoQ 联合主办的「2024 可信数据库发展大会」&#xff08;TDBC&#xff09;在北京召开。 酷克数据解决方案架构师吴昊受邀参与“电信行业数…

给Wordpress评论列表的用户昵称增加个性化角色称号和注册年数

什么是个性化角色称号? 个性化称号:其实就是对应wordpress的几个用户组,重新给它装个面具。 比如:管理员 -> 华山掌门 比如:订阅者 -> 华山弟子 比如:VIP组 -> 掌门亲传弟子 。。。 就是个好玩的东西 什么又是注册年数? 显示用户在你的网站上注册了多少…

阿里布达插画:成都亚恒丰创教育科技有限公司

阿里布达插画&#xff1a;梦幻与现实交织的绮丽画卷 在浩瀚的艺术长河中&#xff0c;总有一些作品以其独特的魅力&#xff0c;跨越时空的界限&#xff0c;触动着每一个观者的心灵。阿里布达插画&#xff0c;便是这样一股不可忽视的艺术清流&#xff0c;它以细腻的情感描绘、奇…

紫光展锐5G安卓核心板T760__国产手机芯片方案

展锐T760安卓核心板是具备续航和性能更加均衡的5G移动平台。其主要特点包括主流的6400万像素摄像头和高达120Hz的刷新率。 平台采用多模融合的创新架构和AI智能调节技术&#xff0c;从而在5G数据场景下降低了37%的整体功耗&#xff0c;在5G待机场景下降低了18%的整体功耗。 多…

收银系统源码-线上商城diy装修

线下线上一体化收银系统越来越受门店重视&#xff0c;尤其是连锁多门店&#xff0c;想通过线下线上相互带动&#xff0c;相互引流&#xff0c;提升门店营业额。商城商城如何装修呢&#xff1f; 1.收银系统开发语言 核心开发语言: PHP、HTML5、Dart后台接口: PHP7.3后合管理网…

40.简易频率计(基于等精度测量法)(3)

&#xff08;1&#xff09;BCD8421码&#xff1a;十进制数字转换成BCD8421码的方法 补零&#xff1a;你需要显示多少位数字&#xff0c;就在前面补上四倍的位宽。比如你要显示一个十进制8位的数字&#xff0c;就在前面补上8*432个零。判断&#xff1a;判断补零部分显示的十进制…